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Abstract 

In 2022, there were 184,437 fires in England, which caused millions of pounds in 

damages and harmed hundreds of lives (Office, 2023). Fires continue to prove 

incredibly dangerous to society. To improve our firefighting abilities, the use of 

firefighting drones is being explored. One aspect of firefighting drones yet to be 

researched is the development of code which can redirect a water stream onto a fire. 

In order to redirect a water stream onto a fire, the water stream and the fire must be 

detected from a video feed. This project develops basic fire detection code and novel 

water stream detection code from recorded videos. These codes are subsequently 

combined to produce code which can accurately move a water stream onto a fire. 

This report presents the developed code and, the approach taken to create it, 

followed by demonstrating the results from experimental testing. Finally, the project 

discusses the codes limitations and scopes for improvement. 

. 

  



1 
 

Chapter 1: Introduction 

1.1 Introduction 

Fires can be incredibly destructive, posing significant risks to human life, property, 

and the environment. Each year, fires cause millions of pounds worth of damage and 

claim thousands of lives worldwide. In England alone, there was a total of 185,437 

fires and 276 fire-related deaths in 2022 (Office, 2023). Firefighting has become a 

crucial service within our communities with firefighters often putting their lives at risk. 

From 1986 to 2013, 26 firefighters died in England whilst fighting fires, exemplifying 

the dangers of firefighting (Office, 2023). 

Traditionally, firefighting teams are deployed with fire engines, equipped with water, 

hoses and other specialist gear. The optimisation of firefighting techniques, paired 

with improvements in fire education and legislation has resulted in a 39% decrease in 

the number of fires over the last 18 years in England, from 474,000 in 2004 to 

184,437 in 2022 (Office, 2023). 

To further improve humanities firefighting capabilities and to stop endangering human 

lives whilst fighting fires, the use of firefighting drones is being explored. Firefighting 

drones have several benefits over traditional firefighting techniques, they can access 

areas inaccessible to humans, provide a better vantage point and give extensive 

information about the nature of the fire - such as its source. Currently firefighting 

drones are used for search and rescue, aerial surveillance and fire detection (Akhloufi 

et al., 2021) (Bullock, 2020). 

Several companies are exploring the use of firefighting drones. Latvian company 

Aerones developed a firefighting drone which can climb 300 m in 6 minutes (Peter, 

2018). The London Fire Brigade uses drones to provide an aerial view of incidents, 

improving their response (London Fire Brigade, 2023). Chinese company EHang has 

developed a manned firefighting drone called the EHang 216F which can deliver 6 

fire extinguisher projectiles and a high-pressure water jet using a laser aiming device 

(EHang, 2014). Despite the current advances, there are still significant challenges to 

fully utilise the potential of firefighting drones. 

One important aspect limiting the widespread deployment of firefighting drones is the 

need for human operators. The deployment of large numbers of drones is limited by 

the number of trained drone operators. Thus, automating fire-fighting drones will 

enable deployment of a large numbers of efficient drones, which due to the lack of 

human operators, have lower operational costs.  
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This report aims to advance the development of firefighting unmanned aerial vehicles 

(UAV’s) by automating the water nozzle aiming. Currently, the accuracy of firefighting 

UAVs is limited by the operator's ability to aim the water stream. Whilst fighting fires, 

the optimal location to aim at is the fires base. Humans cannot see the base of a fire; 

therefore they must estimate its location. An autonomous drone that uses a thermal 

camera can highlight and target a fires thermal hotspot (base), removing human error 

and improving the efficiency with which a firefighting drone extinguishes a fire. 

This project aims to deliver software that uses python and the computer vision library 

OpenCV (Pypi, 2023) to analyse thermal, depth and Red Green Blue (RGB) video 

footage to identify the location of a fire and the position of a water stream. Then, a 

piece of code which combines the fire and water stream detection codes was written, 

to output a pitch and yaw angle to the water nozzle, to accurately reposition the water 

stream onto the fire. The report evaluates the effectiveness of the combined code, 

highlights its limitations and suggests future work for improvements. 

1.2 Aim 

The aim of this project is to develop fire and water stream video recognition software 

to accurately aim and shoot a water stream at a fire. 

1.3 Objectives 

1. Develop vision-based fire recognition software in python using OpenCV which 

utilises a RealSense D435i depth sensor and a MLX90640 thermal camera to 

locate and track fires.  

2. Test the fire recognition software from Objective 1 on videos of fires to 

establish its effectiveness.  

3. Develop vision-based water stream detection software in python using 

OpenCV which utilises a RealSense D435i depth sensor and a MLX90640 

thermal camera to detect a water stream.  

4. Undertake an experiment to obtain thermal, RGB and depth videos of a water 

stream, then test the water stream detection software on these videos. 

5. Combine and develop software from Objectives 1 and 4 to accurately aim the 

water stream at the base of a fire.  

6. Test software developed in Objective 5 by using it to control the shooting of 

water stream at a fire. 
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1.4 Report Layout 

The report is split into 7 chapters: 

 Chapter 1 introduces the project, detailing its purpose and motivations. 

 Chapter 2 contains the first coding challenge of the project, fire detection. The 

chapter covers the method used to detect fire and evaluates its success 

through testing on pre-recorded videos. 

 Chapter 3 details the development of water stream detection code, the 

success of the code and its limitations. 

 Chapter 4 develops code to move a target point onto the location of the water 

stream using a proportional integral derivative (PID) controller. 

 Chapter 5 details how the code must be modified to effectively aim the water 

stream at the base of a fire. 

 Chapter 6 combines the code from all previous chapters to move a water 

stream onto a fire in real time and displays the final test’s results. 

 Chapter 7 concludes the project, highlights its limitations and suggests scopes 

for further work. 
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Chapter 2: Fire Detection 

2.1 Introduction 

Traditional fire detection methods, such as heat and smoke detectors, have been 

widely used successfully for decades. These devices are limited in their application 

and accuracy, as they can only cover limited enclosed areas, offer delayed detection, 

produce numerous false alarms and have limited sensing capabilities (AZoSensors, 

2012). As technology has advanced, the implementation of alternative fire detection 

techniques such as video detection have been explored. 

Many of the currently available VFD algorithms prioritize the detection of both smoke 

and flames, in contrast to earlier papers that focused solely on the detection of flames 

(Phillips et al., 2001). Smoke tends to spread faster than flames, enabling earlier 

detection of fires. It is an excellent indicator that a fire is occurring however it does 

not offer any meaningful location data, key information to extinguish a fire. 

A perfect VFD algorithm is yet to be created due to the large variability of light, 

shapes, movement and colour of different detection environments. Present flame 

detection algorithms utilise flames unique characteristic such as their colour, shape, 

dynamic texture and flickering to identify them (Gaur et al., 2020). Cetin et al (2013) 

claimed the application of both RGB and infrared (IR) cameras improves the 

accuracy of VFD algorithms, thus this project uses both a RGB and thermal camera. 

Many contemporary VFD algorithm’s that only use a RGB camera harness deep 

learning algorithms such as convolutional neural networks, a type of neural network 

designed for image recognition that can automatically learn and identify features 

within an image (Saponara et al., 2020) (Frizzi et al., 2016). These techniques are 

beyond the scope of this project and were not explored. 

This project does not attempt to advance the state of fire detection techniques, it 

seeks to develop an algorithm to reposition a water stream onto the base of a fire. To 

create successful aiming code, working VFD code is required. This chapter presents 

a VFD algorithm, that utilises a fires colour and heat properties to identify fires. 

2.2 Methodology 

Two key, widely recognised characteristics of fires are their heat and orange-based 

colour. The VFD algorithm developed uses these characteristics to identify fires, 

highlighting the location of thermal hotspots from the thermal camera and the location 
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of fire-coloured objects within the RGB camera. If an object was both orange and hot 

it was assumed to be a fire.  

This project deals with the aiming of a water stream at a fire for a firefighting UAV, it 

assumes the drone has already found the broad location of a fire and is positioned 

such that the fire could be extinguished. Considering a fire is within the frame, the 

hottest orange coloured object is likely a fire. 

To test the accuracy of the VFD algorithm, Dr Kaddouh provided 4 raw RGB and 

thermal videos from previously conducted firefighting UAV tests (Kaddouh, 2022). 

These videos were used to develop and test the VFD algorithm. The flowchart in 

Figure 2.1 shows how the VFD algorithm works: 

 
Figure 2.1: Flowchart of VFD algorithm 
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The thermal frame was converted from the RGB colour space into the LAB colour 

space to adjust the frames brightness. A brighter frame was used to create more 

contrast within the greyscale image and enable easier contour extraction. Figure 2.2 

and Figure 2.3 show how an increase in the brightness allowed easier detection of 

thermal contours, Figure 2.3 contains a more visible thermal hotspot. 

  
Figure 2.2: Raw thermal frame Figure 2.3: Processed thermal frame 

The location of the fire was chosen to be at the centre of the largest thermal contour, 

rather than the centre of RGB contours, since the optimal location to shoot when 

extinguishing a fire is the fires hotspot (base), not the fires flames. Guidance for using 

a fire extinguisher as indicated by Edwards (2022) supports this assumption. 

The location of the flames (RGB contours) and the base of the fire (thermal contour) 

did not align, therefore if the RGB contour was sufficiently close to the thermal 

contour, the thermal contour was identified as a fire. This distance value and other 

threshold values was chosen through systematic trial and error by observing the 

values that resulted in the best fire detection. 

2.3 Results 

Table 2.1: Success of VFD algorithm 

Video Total Frames 
Fire 

Frames 
Detected Fire 

Frames False Positives 
Accuracy 

(%) 
1 359 0 2 2 0 
2 643 320 235 2 72.8 
3 933 322 260 3 79.8 
4 1309 673 500 2 74.0 

Table 2.1 shows the results of the VFD algorithm. The detected fire frames are the 

total number of frames the code detected fire. The fire frames are the total number of 

frames that actually contained a fire. False positives are the number of frames where 

the code detected a fire despite none being present. Accuracy is defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =
𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝐹𝑖𝑟𝑒 𝐹𝑟𝑎𝑚𝑒𝑠 − 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑖𝑟𝑒 𝐹𝑟𝑎𝑚𝑒𝑠
∗ 100 (1) 
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The total frames were calculated by adding a frame count to the code, after each 

frame, the frame count increased by one. The detected fire frames count worked in a 

similar way, but it only increased if the algorithm detected a fire. Human judgement 

was used to determine the true number of fire frames; it may be inaccurate. 

Video 1 was disregarded as there was no fire within the video. The mean accuracy of 

videos 2, 3 & 4, was 75.5%. The thermal fire detection is shown in Figure 2.4 and the 

RGB fire detection is shown in Figure 2.5: 

  
Figure 2.4: Thermal frame fire detection Figure 2.5: RGB frame fire detection 

The final resultant fire detection is shown in Figure 2.6, the red dot represent the 

centre of the fire contour and the location of the fire. 

:  
Figure 2.6: Fire detection 

2.4 Discussion 

Compared to contemporary VFD algorithms, the resultant success rate of 75.5% was 

relatively low. Çetin et al. (2013) evaluated 3 RGB detection methods across a wide 

range of different videos, he found an average success rate ranging from 78.4% to 

87% accuracy. These methods utilised smoke detection and did not have access to a 

thermal camera so a direct comparison cannot be made. The 3 methods Cetin et al. 

evaluated would likely have a higher detection rate if paired with a thermal camera. 

The primary explanation for the algorithm’s failure to detect all incidents of fire is due 

to limitations of the thermal camera. When far from the fire, the thermal camera failed 

to highlight the thermal hotspots. Subsequently, a fire was not highlighted as the 

algorithm needs both a positive thermal and RGB detection to identify a fire. All actual 

fire frames were counted, regardless of distance, explaining the accuracy of 75.5%. 
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This project assumes the firefighting drone is positioned in a suitable location to 

extinguish the fire, for significant segments in the video footage provided, this was not 

true. When the drone is in position to extinguish the fire (close to the fire), the 

accuracy of the developed VFD algorithm substantially increases. 

The RGB fire detection code could not be used exclusively as a fire detector because 

it only highlighted fire-coloured objects. Figure 2.5 depicts when the RGB fire 

detection code identified a collection of false positives, on the ground to the left of the 

building some non-fire, fire-coloured objects were incorrectly highlighted as fires.  

The thermal fire detection could not be used exclusively as a fire detector because 

some hot objects are not fires. Occasionally a seemingly random thermal contour 

would appear within the test videos, causing some of the false positives in Table 2.1. 

For this reason, a verification system was implemented where a fire was only 

detected if both the thermal and RGB cameras both detected a fire. 

The false positives detailed in Table 2.1 occurred when the coordinates of false 

positives RGB fire contours were within 50 pixels of the largest thermal contour. 

When the distance checker was reduced lower than 50 pixels, the number of false 

positives reduced, however the fire detection accuracy also decreased. A distance 

value of 50 pixels was found to be the optimal distance. 

The VFD algorithm that was derived for this project has limited functionality, any hot 

fire-coloured object would be highlighted as a fire, if a fire-coloured object was close 

to a hot object, then the hot object would be highlighted as a fire. Fires that are not 

orange, such as a gas fire, will not be identified. To ensure accurate fire detection 

thermal camera must be relatively close to the fire. 

The algorithm has undergone limited testing due to the projects time constraints; it 

may perform better in different conditions. 

2.5 Conclusions 

 The VFD algorithm produced resulted in a total accuracy of 75.5%. 

 The code has limited functionality, the thermal camera must be close to the 

fire and a fire must already be within frame for the best results.  

 The assumption that all hot orange objects are fires is not always correct and 

will sometimes result in false positives. 
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Chapter 3: Water Stream Detection 

3.1 Introduction 

To reposition a water stream onto a fire, the location of the water stream must be 

known. Chapter 3 shows the development of software to detect a water stream. 

Extensive research suggests very little work has been done in this area, only one 

research paper was found that used a water stream detection algorithm (Wu, 2016). 

Wu successfully detected a water stream using colour recognition (Wu, 2016), 

however Wu required very specific lighting, a still frame and the fire to be positioned 

on the ground. 

This project concerns a firefighting drone, which will move and operate in a multitude 

of different conditions, utilising a colour recognition method similar to WU is 

unsuitable for the diverse range of operating settings. 

Initially, experiments were conducted to collect footage from a thermal, RGB and 

depth camera to analyse and determine the best detection method. Several different 

water stream detection methods such as background subtraction, colour detection 

and moving object detection were tested on all the available cameras. Chapter 3 

explains which water stream detection method was chosen and why, how the water 

stream detection code works, evaluates its effectiveness and highlights its limitations. 

3.2 Methodology 

The main premise behind the developed water stream detection algorithm is the 

utilisation of the OpenCV function cv2.absdiff, which displays the differences between 

two images as white and the similarities as black. 

A still image taken just before the water stream starts is compared to a frame of the 

live water stream feed, this technique only required the use of the RGB camera. 

The flowchart in Figure 3.1 shows how the water stream detection code works: 
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Figure 3.1: Flowchart of water stream detection algorithm 
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Locating the water stream with the thermal camera is not possible because difference 

in temperature between the water stream and the background is not enough to be 

detected by the MLX90640 thermal camera. 

The depth camera could not be used to locate the water stream because the location 

of the water stream on the depth camera does not align with the location of the water 

stream on the RGB camera. The water stream appears as black on the depth stream 

colour map with a depth of 0 m as a parabola. A comparison of a RGB and a depth 

frame can be seen in Figure 3.2, Figure 3.3 and Figure 3.4: 

  

Figure 3.2: RGB frame 80 Figure 3.3: Depth frame 80 

  
Figure 3.4: Comparison of RGB and depth water stream location 

The water streams depiction as a black parabola is an error by the RealSense D435i 

depth sensor. The depth sensor works similarly to human eyes depth perception, 

using two cameras that are a known distance apart, by comparing their output, depth 

is calculated (IntelRealSense, 2019). The water stream appears directly in front of the 

two depth cameras; thus the two different cameras display vastly different images. 

The difference between the 2 camera frames is so vast that the depth sensor is 

unable to calculate the distance to the water stream, thus it is displayed as at 0 m as 

its distance is undefined. The same water stream is displayed in two separate 

locations, producing the parabola seen in Figure 3.3. 

The RGB camera was used to detect the water stream as the using the thermal and 

the depth cameras was not possible. Colour detection is an inadequate technique as 

the water stream changes colour with changes in the background and lighting. 
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The function OpenCV function cv2.createBackgroundSubtractorMOG2() was 

explored, cv2.createBackgroundSubtractorMOG2() creates a static background from 

which it subtracts the current frame, leaving the moving objects (GeeksforGeeks, 

2020). The result of testing on the water stream footage are shown in Figure 3.5: 

 
Figure 3.5: Water stream detection using cv2.createBackgroundSubtractorMOG2() 

The water stream is detected in Figure 3.5, however there is also extensive noise 

caused by movements of the camera, shown as other white areas. 

cv2.BackgroundSubtractorMOG2 was not used in the water stream detection 

algorithm as there are insufficient input variables. Whilst the History (number of 

frames used to initialise the background) and VarThreshold (determines whether a 

frame belongs to the foreground or background) can be controlled, the configuration 

of the water nozzle (whether it is switched on or off), cannot be inputted. 

The OpenCV function cv2.absdiff was chosen as the optimal technique to detect the 

water stream as it works very similarly to cv2.BackgroundSubtractorMOG2 but allows 

more input variables, such as the configuration of the water nozzle. 

The variables, enhancement amount, contour area size and threshold values were 

chosen through systematic trial and error to provide the best water stream detection. 

The length of the image list was limited to 50, to limit the storage required to run the 

water stream detection algorithm. The 20th to 40th frame within image list were 

averaged and set as the background image to blur the movement of the camera, 

reducing its associated error and enabling better detection of the water stream. 

3.3 Results 

A total of 8 different cases were analysed, the results are displayed in Table 3.1, the 

difference image displays the image which was used to find the water stream 

(labelled as difference_image in the flowchart). The RGB image displays what the 

water stream detection algorithm highlighted as the water stream. 
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Table 3.1: Water stream detection results 

Case RGB Image Difference Image Detected 
1 

  

Yes 

2 

  

Yes 

3 

  

No 

4 

  

No 

5 

  

Yes 

6 

  

Yes 

7 

  

Yes 
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8 

  

Yes 

The water stream detection software had a detection success rate of 75%, 6 out of 

the 8 cases highlighted the water stream correctly. The accuracy with which the code 

detected the water stream varied with each case. 

3.4 Discussion 

The 75% success rate does not portray the accuracy of the water stream detection 

algorithm. The accuracy of each cases water stream detection couldn’t be quantified; 

whilst many cases detected the water stream very accurately, some cases included 

noise (false positives) as part of the detected water stream. False positives were 

included as part of the water stream due to movement of the camera relative to the 

background. The ideal conditions for this code require no movement of the camera or 

the background, thus the only difference between the background and RGB image 

would be the water stream. Unfortunately, movement occurred from both the camera 

and the background, due to the camera being carried and wind shaking trees.  

In an attempt to mitigate any undesired movement, the largest contour within the 

difference image was considered the water stream. Any small areas of difference 

caused by the cameras moving were ignored. For the majority of cases this 

assumption allowed the correct identification of the water stream, however when 

camera movement caused areas of difference larger than the area of the water 

stream, the water stream was incorrectly identified. Slight movement of a bright 

object caused large white spots within the difference image, as anything touching 

them was considered to have moved and was highlighted as a difference. The result 

of cases 3 and 4 (Table 3.1) exemplify this, the sky is highlighted as a water stream.  

Another reason cases 3 and 4 incorrectly highlighted the water stream is because the 

water stream was very difficult to see. The angle of the camera and the lighting 

conditions meant the water stream looked very similar to the background; thus it 

wasn’t highlighted as a significant difference in the difference image. 

The code correctly identified the water stream in cases 5, 6, and 8; however, it also 

identified additional background objects as part of the water stream. This occurred 

because small white areas appeared in the difference image due to camera 
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movement, and when these areas were adjacent to the water stream, they were 

highlighted as part of the water stream. The OpenCV function cv2.findContours 

counts a contour within the difference image as all continuous points along the 

boundary of an object of the same colour. Since all objects that change within the 

difference image are white, the water stream and any background changes adjacent 

to it are counted as the same contour. Consequently, some non-water stream objects 

were wrongly identified as part of the water stream. 

The code does not work if an object (that isn’t the water stream) moves into or within 

the frame after the background image has been established, as these objects are 

labelled as differences. If these differences have a larger area than the water stream, 

they will be incorrectly labelled as the water stream. 

When the water stream is difficult to differentiate from the background such as at 

night and for low light conditions, the code will not work because the water stream 

cannot be seen with the RGB camera. It will not be highlighted as a difference; thus it 

will not be detected as the water stream.  

3.5 Conclusions 

 The water stream detection algorithm correctly identified a water stream in 

75% of the test cases.  

 The accuracy the water stream detection algorithm detected the water stream 

varied for the different cases. The highest accuracy was achieved when the 

camera was kept still, and the waters stream was very visible on the RGB 

camera. For further experiments, a conscious effort was made to ensure the 

camera remained as still as possible. 

 The developed water stream detection software only works if the water stream 

can be seen by the RGB camera, in low light conditions the software does not 

work.  

 If there is excess movement within the cameras frame or by the camera itself, 

such as if it was raining, the code will be unable to detect the water stream. 

 Only a RGB camera is needed to detect a water stream  
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Chapter 4: Addition of a PID Controller 

4.1 Introduction 

A PID controller is a feedback control system that regulates a process or system by 

continuously adjusting the control signal based on the error between the desired 

setpoint and the actual process variable using three components: Proportional, 

Integral, and Derivative (Panda, 2012). 

Having established the location of the water stream and a fire, a PID controller can be 

used to move the water stream onto the fire. Before conducting physical testing on a 

live system, testing was carried out on pre-recorded videos to verify the effectiveness 

of the PID controller in achieving the desired control outcomes. In recordings, it is 

impossible to move the location of the water stream, therefore code was written to 

move a target point onto the location of the water stream. Before conducting tests, 

the PID controller was calibrated, and successful code was established. Having 

conducted successful tests, the location of the water stream and the target point can 

be swapped, so that the water stream moves to the target point for real life tests. 

4.2 Methodology 

Rather than coding a PID controller from scratch, a simple PID controller package 

was imported from the Python Package Index (Pypi) (Pypi, 2021).  

The simple PID controller from Pypi operates such that the PID controller is defined 

with the following line of code: 

pid_x = PID(Kp=1.1, Ki=0, Kd=0.005, setpoint=target_x) 

The setpoint is the target point which the PID controller will move the x coordinate 

towards. Kp, Ki and Kd define the Proportional, Integral and Derivative gains. The 

PID controller is applied using the code: 

pid_output_x = pid_x(x) 
x += pid_output_x 

The value of x was updated and moved closer to target_x with each new frame. The 

PID controller code utilised two separate PID controllers, for the x and y directions.  

The flowchart in Figure 4.1 depicts the addition of the PID controller code to the water 

stream detection code. The dotted box represents where additions were made to the 

water stream detection code. The flowchart is presented in this way to prevent the 

repetition of the water stream detection code flowchart. 
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Figure 4.1: Flowchart of PID controller algorithm 

4.3 Calibration 

A PID controller has 3 variables, the proportional gain (Kp), the integral gain (Ki) and 

the derivative gain (Kd). Changing these variables resulted in different convergent 

times, oscillations and overshoots. Mashor (2018) found using a manual tuning 

method optimizes a PID controller better than using auto-tuning methods, therefore a 

manual tuning method was used in to calibrate the PID controller in this project. 

Table 4.1 shows how the PID controller was calibrated. Initially the Ki and Kd were 

set to 0 and the Kp was increased until the system output oscillations of consistent 

amplitude and period. This occurred when Kp was 2. Then the Kp was reduced until 

the system converged, shown in case 1. Case 2 demonstrates the affect of a 

increase in the Ki, the steady state error reduced but the amount of overshoot 

increased. The increase in overshoot shown in case 2 did not justify the reduction in 

steady state error, therefore Ki was set to 0. Kd improves a systems response to 

changes in the setpoint. Initially Kd was set to 0.1, as seen in case 3. Case 3 resulted 

in the system no longer converging, so smaller Kd of 0.005 was tested as seen in 

case 4. Case 4 provided an optimal response; within 0.3 seconds the system settled. 
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Table 4.1: Calibration of the PID controller 

Case 1 Case 2 

  
Kp = 1.1, Ki = 0, Kd = 0 Kp = 1.1, Ki = 0.55, Kd = 0 

Case 3 Case 4 

  
Kp = 1.1, Ki = 0, Kd = 0.1 Kp = 1.1, Ki = 0, Kd = 0.005 

4.5 Results 

Table 4.2: PID controller results 
Frame 81 82 83 84 
Photo 

    

Table 4.2 shows the results using the optimal PID controller setup from case 4 in the 

code. Within 4 frames the target point coincides with the water streams location. 

4.6 Discussion 

The code moved a target point onto the tip of the water stream. The PID controller 

was setup for the best response. For further experiments, the target point, and water 

stream coordinates will swap so that the water stream moves towards a target point. 

4.7 Conclusion 

 The optimal setup of the PID controller was Kp = 1.1, Ki = 0 and Kd = 0.005. 

 PID controller code was successfully added to the water stream detection 

code to a target point onto the location of the water stream 
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Chapter 5: Aiming 

5.1 Introduction 

Chapters 2-4 established VFD, water stream detection and PID controller code. 

Chapter 5 seeks to calibrate these codes to work in real time.  

Before this chapter, pixel coordinates of the water streams location are known, 

however these coordinates do not relate to the water stream’s actual position. The 

location of the water stream within the camera frame needs to be calibrated to equal 

the actual location of the water stream. 

5.2 Methodology 

The water stream frame coordinates do not indicate where the water stream lands, 

rather they represent the peak of the water stream (shown as a star). Moving the 

water stream’s pixel coordinates, to the fire’s pixel coordinates would not work as the 

water stream would falls short of the fire. Figure 5.1 depicts the result of aligning the 

water stream and fire coordinates. 

 
Figure 5.1: Water stream coordinates coinciding with the fire coordinates 

The water stream coordinates need to be adjusted to represent where the water 

stream point of impact. Correcting the offset requires the angle of the water nozzle, 

the drone location (height of drone) and the target location (if the water is hitting a 

wall or the ground) to be known. Determining the correction required for every 

possible arrangement is not achievable within the timeframe of this project, therefore 

the project focused on one critical scenario. 

Considering the safety implications associated with placing a fire on a wall, it was 

deemed more practical to develop code that solely addressed extinguishing fires 

located on the ground. To remove the effect of changing drone height, the drone was 

fixed at a height of 0.8 m. Both the water pressure and pitch angle can control the 

distance covered by the water stream, to reduce the number of changing variables 

the water pressure was kept constant. 

The aiming system can be split into 2 sections, the yaw and pitch angle: 
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5.2.1 Pitch Angle 

To determine the required input pitch angle, tests were conducted to find the 

relationship between the pitch angle and the distance to where the water impacted. 

The pitch of the water nozzle can operate from a minimum angle of -30° to a 

maximum of 70°. For every 10°, the input pitch angle was changed and the distance 

to where the water stream landed was recorded. An equation to link these variables 

was found.   

The distance to the fire can be found from the depth camera. If this distance and the 

relationship between the pitch angle and distance to the water landing location are 

known, the pitch angle required to land the water stream on a fire can be found. 

5.2.2 Yaw Angle 

To relate the pixel coordinates to the input yaw angle, an experiment must be 

performed. The yaw of the water nozzle can operate from a minimum of -80° to 

maximum of 80°. If the water nozzle is set to 80°, the water nozzle will spray to the 

right of the frame, outside of the camera field of view. To calibrate the input yaw 

angle with the pixel water stream coordinates, the input yaw angles required to just 

enter each side of the camera frame are needed. Figure 5.2 illustrates the yaw angle 

calibration. Angles x and y equal the required input yaw angles to hit the left and right 

sides of the frame. 

Figure 5.2: Angle required for water stream to enter frame 

Once these two values are known, the water streams horizontal pixel coordinate can 

be converted into a yaw angle through Equation 2: 

𝐼𝑛𝑝𝑢𝑡 𝑌𝑎𝑤 𝐴𝑛𝑔𝑙𝑒 =
ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑝𝑖𝑥𝑒𝑙 𝑐𝑜𝑜𝑑𝑖𝑛𝑎𝑡𝑒 ∗ (|𝑥| + |𝑦|)

640
+ 𝑥 (2) 
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Where 640 is the width of the frame in pixels. 

The input yaw angle required to just enter the water frame was hypothesised to 

change with changes in the input pitch angle, therefore the experiment conducted 

measured the yaw angle required for the water stream to just enter the frame for 

every 10° of the total range of input pitch angles. 

5.3 Results 

Experiment 1: Yaw angle limits 

The yaw angle limits x and y were found to be -65° and 50°. The pitch angle did not 

affect the yaw angle limits. 

Experiment 2: Input Pitch Angle vs distance to water stream landing location 

 

Graph 5.1: Distance (m) to water stream against input pitch angle (°) 

The relationship between the input pitch angle and the distance to where the water 

stream landed is shown in Graph 5.1. Equation 3 describes the line of best fit within 

Graph 5.1 between distance and the input pitch angle: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0.403 ∗ 𝐼𝑛𝑝𝑢𝑡 𝑃𝑖𝑡𝑐ℎ 𝐴𝑛𝑔𝑙𝑒 + 4.5933 (3) 

The line of best fit had a coefficient of determination of 0.8314, suggesting there is a 

strong positive correlation between input pitch angle and distance. 

5.4 Discussion 

Equation 3 can be rearranged into Equation 4; so that the input pitch angle 

determines where the water stream lands: 

y = 0.0403x + 4.5933
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𝐼𝑛𝑝𝑢𝑡 𝑃𝑖𝑡𝑐ℎ 𝐴𝑛𝑔𝑙𝑒 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 4.5933

0.403
  (4) 

Experiment 1 found x to be -65° and y to be 50°, inputting these values into Equation 

2 creates Equation 5: 

𝐼𝑛𝑝𝑢𝑡 𝑌𝑎𝑤 𝐴𝑛𝑔𝑙𝑒 =
ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑝𝑖𝑥𝑒𝑙 𝑐𝑜𝑜𝑑𝑖𝑛𝑎𝑡𝑒 ∗ (115)

640
− 65 (5) 

If the distance to a fire and the horizontal pixel coordinate of the water stream from 

the water stream detection code are known, the input yaw and pitch angles needed to 

hit the fire are known. The distance to the fire can be found using the coordinates of 

the detected fire from the VFD code and the depth camera. 

Whilst recording results, it was observed that the water stream would land across a 

wide area approximately 1 m in length and 0.3 m in width. Judging the centre of this 

landing area was difficult, adding error to the results. Determining the exact angle at 

which the water stream entered the frame was not possible as small 1 degree 

changes in the input nozzle yaw angle resulted in no observable difference in water 

streams landing location. 

Keeping the drone arm stationary throughout the experiment was difficult due to the 

weight of the water pouch, as the arm moved it changed the trajectory of the water 

stream, interfering with the results, causing error. As the water pouch ran out, the 

water pressure decreased. This added a new variable which affects the results, 

adding to the error.  

The large landing area of the water stream counteracts the inaccuracy caused by the 

calibration errors. If the calibration of the water nozzle aiming is slightly incorrect the 

large landing area ensures the water stream would still land on the fire.  

5.5 Conclusion 

 Equation 4 and Equation 5 describe how to calculate the yaw and pitch output 

angles to aim the water nozzle at a fire. These equations were used in the 

final combined code to control the water nozzle. 

 There was significant error in the results that determined Equation 4 and 

Equation 5 which make the equations less accurate. The large landing area of 

the water stream counteract these errors. 
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Chapter 6: Final test 

6.1 Introduction 

Chapter 6 combines all the previously developed code and presents how the code 

was altered to be used in real time. 

Until Chapter 6, all previous code operated by analysing pre-recorded videos. 

Modifying the code to operate in real time presented significant challenges. The main 

issue was integrating the software and hardware. As this project is solely focused on 

developing the software aspect of the firefighting drone, assistance establishing 

cohesion with the hardware was provided by Dr Shival Dubey. 

Having established code which ran in real time, an experiment was conducted to 

establish the effectiveness of the combined code. This chapter presents the 

combined real time code, shows the results of the experiment and discusses the 

codes success and failures. 

6.2 Health and safety 

The fire experiment was carried out in a private garden to remove the risk to the 

public and to limit disturbance caused by lighting a fire. The fire was lit on top of a 

barbecue to remove the danger of the fire spreading and to allow the fire to be 

extinguished and controlled by closing the lid. A fire extinguisher was on standby in 

case of the fire got out of control. All risks were considered and mitigated. 

6.3 Methodology 

The code utilises all previously developed code. Initially the VFD code is used to 

detect whether there is a fire and where the fire is. If a fire is detected, the water 

nozzle is toggled on. Once the water stream is turned on, the water stream detection 

code detects the coordinates of the water stream. 

As presented in Chapter 5, the yaw angle of the water nozzle is controlled using a 

PID controller, the pitch angle of the water nozzle is controlled using the previously 

established relationship between pitch angle and distance. The distance to the fire is 

found using the depth camera. 

The flowchart in Figure 6.1 shows how the developed code from earlier chapters was 

combined: 
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Figure 6.1: Flowchart of combined code 

6.4 Results and Discussion 

The software ran on a Raspberry Pi, taking various camera frames as inputs. After 

processing the video frames, the code outputted a yaw and pitch angle to the water 

nozzle, as well as the configuration of the water pump. 

To observe the result of the combined code, a monitor was attached to the Raspberry 

Pi, to display the output of the RGB, thermal and result video feeds. Figure 6.2 shows 

the output of the RGB video feed, the fire and other fire-coloured objects were 

highlighted as part of the RGB fire detection code. Figure 6.3 shows the output of the 

thermal video feed, the fire was successfully highlighted as a thermal contour. 
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Figure 6.2: RGB fire detection Figure 6.3: Thermal fire detection 

The thermal and RGB frames did not align due to a misalignment of the thermal and 

RGB cameras. The location of the identified fire was located to the right of the actual 

fire, as seen in Figure 6.4. After a short delay the result frame showed a fire was 

detected, as shown in Figure 6.4. 

  

Figure 6.4: Result frame, showing the final 
fire detection 

Figure 6.5: Result frame after the water 
stream started 

As a fire was detected in the result frame, the water stream was toggled on. As soon 

as the water pump was toggled on and water entered the frame, the fire was no 

longer detected within the result frame, as seen in Figure 6.5.  

The VFD code was very temperamental, despite a RGB contour always being within 

50 pixels of the thermal contour (often due to a false positive), a resultant fire was 

often not detected. It is hypothesised that this occurred due to processing limitations 

of the Raspberry Pi. The Depth Camera D435i’s RGB camera operates at 30 fps 

(IntelRealSense, 2019). Within 1/30th of a second the Raspberry Pi must individually 

check the distance between every RGB contour and the thermal contour.  

If the VFD code is not processed quick enough, it would be analysing a previous 

frame instead of the live frame. This would account for the short delay between the 

detection of individual RGB and thermal fires and the final fire detection. The code 

requires a few seconds to calculate the distance between each RGB fire contour and 

the thermal contour. The first few RGB contours in the list may be farther than 50 
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pixels away from the thermal contour, despite other RGB contours being within 

range. If this occurs, the water pump will turn on after a few seconds of delay when it 

eventually checks a RGB contour that is within range. 

In an attempt to resolve this issue, an orange bag was placed behind the fire (at a 

safe distance) and the distance value was increased to 300 pixels so that most RGB 

contours (even those that aren’t the fire) would trigger the detection of a fire. This 

successfully toggled the pump on quicker. The success of this alteration supports the 

hypothesis that there is limited processing power. 

Once the water pump is toggled on, the water stream detection part of the code was 

triggered. An intensive part of the code that challenges the processing power of the 

Raspberry Pi, as a background frame must be subtracted from a live frame. Once the 

water pump was toggled on, the water nozzle did not move. Either the water stream 

was not being detected or Raspberry Pi was having processing issues. 

In case the lack of movement was due to the water stream not being detected, the 

background was changed. The new background is shown in Figure 6.6, this change 

did not result in detection of the water stream. 

 

Figure 6.6: Change in background 

It cannot be conclusively determined whether the code unsuccessfully detected the 

water stream or whether the computer was unable to process all the information. Due 

to the success of earlier code and the change in background having no effect, it is 

hypothesised the failure was due to the Raspberry Pi’s processing limitations. 

6.5 Conclusion 

 The combined code successfully ran in live conditions, the RGB, thermal and 

depth camera footage were successfully read.  

 The combined code analysed the code and turned the water pump on.  

 The combined code was unable to move the water stream onto the fire.  
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Chapter 7: Conclusion 

7.1 Achievements 

 VFD code was written and tested on pre-recorded videos. It achieved an 

accuracy of 75.5%. 

 Video footage was obtained of the firefighting drone firing a water stream 

against a range of different backgrounds.  

 Water stream detection code was successfully written and tested on the 

obtained video footage, achieving a success rate of 75%. 

 PID controller code was written and combined with the water stream detection 

code to move a target point onto the detected water stream. 

 The PID controller code was calibrated to find the optimal PID gain values, 

these were Kp = 1.1, Ki = 0 and Kd = 0.005. 

 The input yaw and pitch angles were related to the water stream detection 

and fire detection codes by conducting calibration experiments. 

 A final combined code which moves the water stream onto a fire was written. 

 A final experiment was conducted to test the effectiveness of the final 

combined code. 

 The final combined code successfully ran and detected the fire, resulting in 

the water pump initiating the spraying of the water stream. 

7.2 Discussion 

The project achieved all of its objectives. A successful VFD code was written and 

tested, achieving objectives 1 and 2. The VFD code achieved an accuracy of 75.5% 

on a set of 4 recorded videos. When the drone was close to the fire, the fire was 

successfully detected more often. 

Water stream detection code was written and tested on recorded videos, achieving a 

success rate of 75%, with varying degrees of accuracy. Therefore objectives 3 and 4 

were fulfilled. 

The VFD code and the water stream detection code were combined with values from 

an aiming calibration test and a PID controller to produce a final set of code which 

could interact with a water nozzle in real time. The combined code successfully ran 

and was tested on a real fire, achieving objectives 5 and 6. In the final test, the 

combined code struggled with hardware processing limitations and was unsuccessful 

in moving the water stream onto the fire. 
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Initially code was written using recorded videos, transitioning from working with 

recorded videos to a live camera feed for Chapter 6 was challenging and caused 

substantial delays. 

7.3 Conclusion 

The project was mostly successful. All the objectives were achieved, three successful 

codes were written and tested. This project provides a good start for further work into 

water stream detection and aiming be built upon. The main failure of the project was 

the inability to move the water stream onto a fire in the final test. 

7.4 Future Work 

 Further work needs to be done to test the success of the combined code. The 

computer used in Chapter 6 needs to be upgraded to a computer with a better 

processor so that the frames can be analysed and processed in real time.  

 Aligning the RGB camera and the thermal camera would improve the 

accuracy of the combined code. 

 The VFD code could be improved by implementing more complex 

contemporary VFD techniques such as deep learning algorithms. 

 Water stream detection can be explored through the use of a more sensitive 

thermal camera, which could detect the water stream. This would enable 

water stream detection to work in low light conditions and at night, overcome 

the limitations of the presented water stream detection code. 

 The water stream could be coloured to test whether this improves the success 

rate of the water stream detection code. 

 To further develop the water stream detection code, the threshold values 

could change with each change in background. A Gaussian function could be 

applied to the difference image to determine the optimum threshold values for 

every different background. 
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Appendix 1: Fire Detection Code 

#importing libraries 
import cv2 
import numpy as np 
 
#reading the video file 
rgb_video = 
cv2.VideoCapture("C:\\Users\\finta\\OneDrive\\Documents\\Year 
3\\Python\\Fire Videos Bibal\\rgb_raw_T3.avi") 
thermal_video = 
cv2.VideoCapture("C:\\Users\\finta\\OneDrive\\Documents\\Year 
3\\Python\\Fire Videos Bibal\\thermal_raw_T3.avi") 
 
# Get the video dimensions 
frame_width = int(rgb_video.get(cv2.CAP_PROP_FRAME_WIDTH)) 
frame_height = int(rgb_video.get(cv2.CAP_PROP_FRAME_HEIGHT)) 
frame_fire_count = 0 
frame_count = 0 
 

# Define the codec and create VideoWriter object 
fourcc = cv2.VideoWriter_fourcc(*'mp4v') 
output_video = cv2.VideoWriter('output_video.mp4', fourcc, 30.0, 
(frame_width, frame_height)) 
 

#looping through the video frames 
while True: 
    ret, rgb_frame = rgb_video.read() 
    ret, thermal_frame = thermal_video.read() 
 
    # Make a copy of the rgb frame to draw contours on 
    result = rgb_frame.copy() 
 
    # Define the range of colours to detect 
    lower_fire = np.array([0, 100, 100]) 
    upper_fire = np.array([50, 255, 255]) 
 
    hsv = cv2.cvtColor(rgb_frame, cv2.COLOR_BGR2HSV) 
 
    #convert the thermal frame to lab to increase contrast 
    thermal_lab = cv2.cvtColor(thermal_frame, cv2.COLOR_BGR2LAB) 
    l, a, b = cv2.split(thermal_lab) 
    l = cv2.add(l, 30) 
    clahe = cv2.createCLAHE(clipLimit=3, tileGridSize=(32,32)) 
    cl = clahe.apply(l) 
    limg = cv2.merge((cl,a,b)) 
    enhanced_thermal_frame = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR) 
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    # Convert the image to grayscale then apply a mask to the image 
    gray = cv2.cvtColor(enhanced_thermal_frame, cv2.COLOR_BGR2GRAY) 
 
    # Apply binary thresholding to find the fire 
    _, thresh = cv2.threshold(gray, 70, 255, cv2.THRESH_BINARY) 
 
    # Find contours of the thermal fire location 
    thermo_contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, 
cv2.CHAIN_APPROX_NONE) 
 
    # Find the largest contour and only display that 
    sorted_contours = sorted(thermo_contours, key=cv2.contourArea, 
reverse=True) 
 
    # Draw the contours on the thermal frame 
    if len(sorted_contours) > 0 and cv2.contourArea(sorted_contours[0]) 
> 100: 
        cv2.drawContours(enhanced_thermal_frame, sorted_contours[0], -1, 
(0, 255, 0), 3) 
        M = cv2.moments(sorted_contours[0]) 
        cx = int(M['m10']/M['m00']) 
        cy = int(M['m01']/M['m00']) 
        # cv2.circle(thermal_frame, (cx,cy), 5, (0, 0, 255), -1) 
 
    # Create a mask for the fire 
    mask = cv2.inRange(hsv, lower_fire, upper_fire) 
     
    #find the contour of the rgb fire location 
    rgb_contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, 
cv2.CHAIN_APPROX_NONE) 
 
    # Draw the contours on the rgb frame 
    cv2.drawContours(rgb_frame, rgb_contours, -1, (0, 255, 0), 3) 
 
    # if rgb_contours are within a 50 pixel radius of the 
thermal_contours, show the thermal_contours 
    # Calculates the centre of each rgb_contour 
    for rgb_contour in rgb_contours: 
        M = cv2.moments(rgb_contour) 
        if M["m00"] != 0: 
            tx = int(M['m10']/M['m00']) 
            ty = int(M['m01']/M['m00']) 
        else : 
            tx = 0 
            ty = 0 
 
        distance = np.sqrt((cx - tx)**2 + (cy - ty)**2) 
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        if distance <= 50 and len(sorted_contours) >0: 
            cv2.drawContours(result, sorted_contours[0], -1, (0, 255, 
0), 3) 
            cv2.circle(result, (cx,cy), 5, (0, 0, 255), -1) 
            print(cx, cy) 
            cv2.circle(result, (tx,ty), 5, (255, 0, 0), -1) 
            frame_fire_count += 1 
            break 
        
 
    output_video.write(result) 
 
    cv2.putText(result, "Frames: " + str(frame_count), (50, 300), 
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2) 
    cv2.putText(result, "Fire frames: " + str(frame_fire_count), (50, 
350), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2) 
 
    cv2.imshow('Enhanced Thermal', enhanced_thermal_frame) 
    cv2.imshow('Result', result) 
    cv2.imshow('Thermal',thermal_frame) 
    cv2.imshow('Rgb',rgb_frame) 
 
    frame_count += 1 
     
    output_video.write(result) 
 
    #exiting with pressing 'q' 
    if cv2.waitKey(24) & 0xFF == ord('q'): 
        break 
 
#releasing and destroying windows 
rgb_video.release() 
output_video.release() 
cv2.destroyAllWindows() 
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Appendix 2: Water Stream Detection Code 

# enhances difference image 
# works in all frames but the sky one 
import pyrealsense2 as rs 
# Import Numpy for easy array manipulation 
import numpy as np 
# Import OpenCV for easy image rendering 
import cv2 
# Import argparse for command-line options 
import argparse 
# Import os.path for file path manipulation 
import os.path 
 
#Experiment 1: D:\\D Downloads\\20230112_142006.bag 
#Experiment 2.1: D:\\D Downloads\\20230210_153108.bag 
#Experiment 2.2: D:\\D Downloads\\20230210_154422.bag 
#Experiment 2.3: D:\\D Downloads\\20230210_154606.bag #DOESN'T WORK 
#Experiment 2.4: D:\\D Downloads\\20230210_154853.bag #DOESN'T WORK 
#Experiment 2.5: D:\\D Downloads\\20230210_155144.bag 
 
# Create object for parsing command-line options 
parser = argparse.ArgumentParser(description="Read recorded bag file and 
display depth stream in jet colormap.\ 
                                Remember to change the stream fps and 
format to match the recorded.") 
# Add argument which takes path to a bag file as an input 
parser.add_argument("-i", "--input", type=str, default="D:\\D 
Downloads\\20230112_142006.bag", help="Path to the bag file") 
# Parse the command line arguments to an object 
args = parser.parse_args() 
# Safety if no parameter have been given 
if not args.input: 
    print("No input paramater have been given.") 
    print("For help type --help") 
    exit() 
# Check if the given file have bag extension 
if os.path.splitext(args.input)[1] != ".bag": 
    print("The given file is not of correct file format.") 
    print("Only .bag files are accepted") 
    exit() 
try: 
    # Create pipeline 
    pipeline = rs.pipeline() 
 
    # Create a config object 
    config = rs.config() 
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    # Tell config that we will use a recorded device from file to be 
used by the pipeline through playback. 
    rs.config.enable_device_from_file(config, args.input) 
 
    # Configure the pipeline to stream the depth stream 
    # Change this parameters according to the recorded bag file 
resolution 
    config.enable_stream(rs.stream.depth, rs.format.z16, 15) 
    config.enable_stream(rs.stream.color, rs.format.rgb8, 15) 
 
    # Start streaming from file 
    pipeline.start(config) 
 
    # Create opencv window to render depth image 
    cv2.namedWindow("Depth Stream", cv2.WINDOW_AUTOSIZE) 
    # Create opencv window to render rgb image 
    cv2.namedWindow("RGB Stream", cv2.WINDOW_AUTOSIZE) 
     
    # Create colorizer object 
    colorizer = rs.colorizer() 
 
    # Make a list of images 
    image_list = [] 
    depth_list = [] 
    zero_list = [0,0] 
    water_stream = False 
 
    fgbg = cv2.createBackgroundSubtractorMOG2(detectShadows=False) 
 
    #define intel6_frame.jpg as the background image 
    cv2.imwrite("intel6_frame.jpg", 
np.asanyarray(pipeline.wait_for_frames().get_color_frame().get_data())) 
 
    # Streaming loop 
    while True: 
        # Get frameset of depth 
        frames = pipeline.wait_for_frames() 
 
        # Get depth frame 
        depth_frame = frames.get_depth_frame() 
 
        # Get rgb frame 
        rgb_frame = frames.get_color_frame() 
 
        # Convert rgb_frame to numpy array to render image in opencv 
        rgb_image = np.asanyarray(rgb_frame.get_data()) 
 
        # Colorize depth frame to jet colormap 
        depth_color_frame = colorizer.colorize(depth_frame) 
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        # Convert depth_frame to numpy array to render image in opencv 
        depth_color_image = np.asanyarray(depth_color_frame.get_data()) 
 
        #height and width of the depth image 
        height, width = depth_color_image.shape[:2] 
 
        #convert the rgb frame to lab 
        rgb_lab = cv2.cvtColor(rgb_image, cv2.COLOR_BGR2LAB) 
        l, a, b = cv2.split(rgb_lab) 
        l = cv2.add(l, -100) 
        l = np.clip(l, 0, 255) 
        clahe = cv2.createCLAHE(clipLimit=1.0, tileGridSize=(8,8)) 
        cl = clahe.apply(l) 
        limg = cv2.merge((cl,a,b)) 
        enhanced_rgb_image = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR) 
 
        #Read background image 
        background = cv2.imread("intel6_frame.jpg") 
 
        # enhance background image 
        background_lab = cv2.cvtColor(background, cv2.COLOR_BGR2LAB) 
        l, a, b = cv2.split(background_lab) 
        l = cv2.add(l, -100) 
        l = np.clip(l, 0, 255) 
        clahe = cv2.createCLAHE(clipLimit=1.0, tileGridSize=(8,8)) 
        cl = clahe.apply(l) 
        limg = cv2.merge((cl,a,b)) 
        enhanced_background_image = cv2.cvtColor(limg, 
cv2.COLOR_LAB2BGR) 
        background_gray = cv2.cvtColor(background, cv2.COLOR_BGR2GRAY) 
 
        gray = cv2.cvtColor(enhanced_rgb_image, cv2.COLOR_BGR2GRAY) 
 
        # adjust brightness of water stream 
        gray = cv2.add(gray, 0) 
        gray = np.clip(gray, 0, 255) 
 
        # adjust brightness of background 
        background_gray = cv2.add(background_gray, -30) 
        bavkground_gray = np.clip(background_gray, 0, 255) 
 
        # add blur 
        difference_image = cv2.GaussianBlur(background_gray, (5,5), 0) 
 
        # Compute the absolute difference between the current frame and 
the background 
        difference_image = cv2.absdiff(background_gray, gray) 
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        # Enhance the difference image 
        difference_image_bgr = cv2.cvtColor(difference_image, 
cv2.COLOR_GRAY2BGR) 
        difference_image_lab = cv2.cvtColor(difference_image_bgr, 
cv2.COLOR_BGR2LAB) 
        l, a, b = cv2.split(difference_image_lab) 
        l = cv2.add(l, -30) 
        l = np.clip(l, 0, 255) 
        clahe = cv2.createCLAHE(clipLimit=1.0, tileGridSize=(8,8)) 
        cl = clahe.apply(l) 
        limg = cv2.merge((cl,a,b)) 
        enhanced_difference_image = cv2.cvtColor(limg, 
cv2.COLOR_LAB2BGR) 
        enhanced_difference_image = 
cv2.cvtColor(enhanced_difference_image, cv2.COLOR_BGR2GRAY) 
 
        # count number of pixels with a depth value of 0.0 
        array = depth_frame.get_data() 
        no_zeros = height*width - np.count_nonzero(array) 
        # Append zero counts to list 
        zero_list.append(no_zeros) 
        if zero_list[-1] > 4000+zero_list[-2]: 
            water_stream = True 
        if zero_list[-1]+6000 < zero_list[-2]: 
            water_stream = False 
        print(water_stream) 
 
        # water stream enters frame at any point from the bottom`` 
        bottom_row = [depth_frame.get_distance(i, height-2) for i in 
range(0+20, width-20)] 
 
        # detects water stream 
        if (0.0 in bottom_row) and water_stream == True: 
            print('Detecting water stream') 
            background_mean = np.mean(image_list[10:20], axis=0) 
            cv2.imwrite("intel6_frame.jpg", background_mean) 
            # find contours 
            ret, thresh = cv2.threshold(enhanced_difference_image, 60, 
255, cv2.THRESH_BINARY) #best value needs to be found. 60 does not 
detect all of floor image 
            contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, 
cv2.CHAIN_APPROX_NONE) 
            # if the contour area is greater than 3000, draw a circle on 
the top point and draw the contour of the water stream 
            for contour in contours: 
                if cv2.contourArea(contour) > 3000: 
                        y_coordinates = [point[0][1] for point in 
contour] 
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                        top_point = 
contour[y_coordinates.index(min(y_coordinates))][0] 
                        cv2.drawContours(enhanced_rgb_image, [contour], 
-1, (0, 255, 0), 3) 
                        cv2.circle(enhanced_rgb_image, tuple(top_point), 
1, (0, 0, 255), 5) 
                        print(top_point) 
        else: 
            image_list.insert(0, enhanced_rgb_image) 
            if len(image_list) > 50: 
                image_list.pop() 
 
        # Render image in opencv window 
        # cv2.imshow("Water", water_stream) 
        cv2.imshow('Enhanced difference image', 
enhanced_difference_image) 
        cv2.imshow("Depth Stream", depth_color_image) 
        cv2.imshow("enhanced rgb image",enhanced_rgb_image) 
        key = cv2.waitKey(1) 
        # if pressed escape exit program 
        if key == 27: 
            cv2.destroyAllWindows() 
            break 
 
finally: 
    pass 
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Appendix 3: PID Controller Code 

# Moves target point to top of contour 
# Detect only the largest contour 
# works in all frames but the sky one 
import pyrealsense2 as rs 
# Import Numpy for easy array manipulation 
import numpy as np 
# Import OpenCV for easy image rendering 
import cv2 
# Import argparse for command-line options 
import argparse 
# Import os.path for file path manipulation 
import os.path 
# Import PID controller 
from simple_pid import PID 
 
#Experiment 1: D:\\D Downloads\\20230112_142006.bag 
#Experiment 2.1: D:\\D Downloads\\20230210_153108.bag 
#Experiment 2.2: D:\\D Downloads\\20230210_154422.bag 
#Experiment 2.3: D:\\D Downloads\\20230210_154606.bag #DOESN'T WORK 
#Experiment 2.4: D:\\D Downloads\\20230210_154853.bag #DOESN'T WORK 
#Experiment 2.5: D:\\D Downloads\\20230210_155144.bag 
 
# Create object for parsing command-line options 
parser = argparse.ArgumentParser(description="Read recorded bag file and 
display depth stream in jet colormap.\ 
                                Remember to change the stream fps and 
format to match the recorded.") 
# Add argument which takes path to a bag file as an input 
parser.add_argument("-i", "--input", type=str, default="D:\\D 
Downloads\\20230112_142006.bag", help="Path to the bag file") 
# Parse the command line arguments to an object 
args = parser.parse_args() 
# Safety if no parameter have been given 
if not args.input: 
    print("No input paramater have been given.") 
    print("For help type --help") 
    exit() 
# Check if the given file have bag extension 
if os.path.splitext(args.input)[1] != ".bag": 
    print("The given file is not of correct file format.") 
    print("Only .bag files are accepted") 
    exit() 
try: 
    # Create pipeline 
    pipeline = rs.pipeline() 
 
    # Create a config object 
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    config = rs.config() 
 
    # Tell config that we will use a recorded device from file to be 
used by the pipeline through playback. 
    rs.config.enable_device_from_file(config, args.input) 
 
    # Configure the pipeline to stream the depth stream 
    # Change this parameters according to the recorded bag file 
resolution 
    config.enable_stream(rs.stream.depth, rs.format.z16, 15) 
    config.enable_stream(rs.stream.color, rs.format.rgb8, 15) 
 
    # Start streaming from file 
    pipeline.start(config) 
 
    # Create opencv window to render depth image 
    cv2.namedWindow("Depth Stream", cv2.WINDOW_AUTOSIZE) 
    # Create opencv window to render rgb image 
    cv2.namedWindow("RGB Stream", cv2.WINDOW_AUTOSIZE) 
     
    # Create colorizer object 
    colorizer = rs.colorizer() 
 
    # Make a list of images 
    image_list = [] 
    depth_list = [] 
    zero_list = [0,0] 
    water_stream = False 
 
    fgbg = cv2.createBackgroundSubtractorMOG2(detectShadows=False) 
 
    #define intel6_frame.jpg as the background image 
    cv2.imwrite("intel6_frame.jpg", 
np.asanyarray(pipeline.wait_for_frames().get_color_frame().get_data())) 
 
    # define x and y - arbituary values in this save - SHOULD BE CHANGED 
TO POSITION OF WATER STREAM    
    x = 600 
    y = 470 
 
    frame_count = 0 
 
    # Streaming loop 
    while True: 
        # Get frameset of depth 
        frames = pipeline.wait_for_frames() 
 
        # Get depth frame 
        depth_frame = frames.get_depth_frame() 
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        # Get rgb frame 
        rgb_frame = frames.get_color_frame() 
 
        # Convert rgb_frame to numpy array to render image in opencv 
        rgb_image = np.asanyarray(rgb_frame.get_data()) 
 
        # Colorize depth frame to jet colormap 
        depth_color_frame = colorizer.colorize(depth_frame) 
 
        # Convert depth_frame to numpy array to render image in opencv 
        depth_color_image = np.asanyarray(depth_color_frame.get_data()) 
 
        #height and width of the depth image 
        height, width = depth_color_image.shape[:2] 
 
        #convert the rgb frame to lab 
        rgb_lab = cv2.cvtColor(rgb_image, cv2.COLOR_BGR2LAB) 
        l, a, b = cv2.split(rgb_lab) 
        l = cv2.add(l, -100) 
        l = np.clip(l, 0, 255) 
        clahe = cv2.createCLAHE(clipLimit=1.0, tileGridSize=(8,8)) 
        cl = clahe.apply(l) 
        limg = cv2.merge((cl,a,b)) 
        enhanced_rgb_image = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR) 
 
        #Read background image 
        background = cv2.imread("intel6_frame.jpg") 
 
        # enhance background image 
        background_lab = cv2.cvtColor(background, cv2.COLOR_BGR2LAB) 
        l, a, b = cv2.split(background_lab) 
        l = cv2.add(l, -100) 
        l = np.clip(l, 0, 255) 
        clahe = cv2.createCLAHE(clipLimit=1.0, tileGridSize=(8,8)) 
        cl = clahe.apply(l) 
        limg = cv2.merge((cl,a,b)) 
        enhanced_background_image = cv2.cvtColor(limg, 
cv2.COLOR_LAB2BGR) 
        background_gray = cv2.cvtColor(background, cv2.COLOR_BGR2GRAY) 
 
        gray = cv2.cvtColor(enhanced_rgb_image, cv2.COLOR_BGR2GRAY) 
 
        # adjust brightness of water stream 
        gray = cv2.add(gray, 0) 
        gray = np.clip(gray, 0, 255) 
 
        # adjust brightness of background 
        background_gray = cv2.add(background_gray, -30) 
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        bavkground_gray = np.clip(background_gray, 0, 255) 
 
        # add blur 
        difference_image = cv2.GaussianBlur(background_gray, (5,5), 0) 
 
        # Compute the absolute difference between the current frame and 
the background 
        difference_image = cv2.absdiff(background_gray, gray) 
 
        # count number of pixels with a depth value of 0.0 
        array = depth_frame.get_data() 
        no_zeros = height*width - np.count_nonzero(array) 
        # Append zero counts to list 
        zero_list.append(no_zeros) 
        if zero_list[-1] > 4000+zero_list[-2]: 
            water_stream = True 
        if zero_list[-1]+6000 < zero_list[-2]: 
            water_stream = False 
        print(water_stream) 
 
        # water stream enters frame at any point from the bottom`` 
        bottom_row = [depth_frame.get_distance(i, height-2) for i in 
range(0+20, width-20)] 
 
        # detects water stream 
        if (0.0 in bottom_row) and water_stream == True: 
            print('Detecting water stream') 
            background_mean = np.mean(image_list[20:40], axis=0) 
            cv2.imwrite("intel6_frame.jpg", background_mean) 
            # find contours 
            ret, thresh = cv2.threshold(difference_image, 60, 255, 
cv2.THRESH_BINARY) #best value needs to be found. 60 does not detect all 
of floor image 
            contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, 
cv2.CHAIN_APPROX_NONE) 
            # if the contour area is greater than 3000, draw a circle on 
the top point and draw the contour of the water stream 
            sorted_contours = sorted(contours, key=cv2.contourArea, 
reverse=True) 
            if cv2.contourArea(sorted_contours[0]) > 3000: 
                contour = sorted_contours[0] 
                y_coordinates = [point[0][1] for point in contour] 
                top_point = 
contour[y_coordinates.index(min(y_coordinates))][0] 
                cv2.drawContours(rgb_image, [contour], -1, (0, 255, 0), 
3) 
                 
                # Target coordinates - NEED TO BE DEFINED BY FIRE 
-  this save moves the dot to the stream, hence stream is target 
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                target_x = top_point[0] 
                target_y = top_point[1] 
 
                # Initialize the PID controllers for x and y directions 
                pid_x = PID(Kp=1.1, Ki=0, Kd=0.005, setpoint=target_x) 
                pid_y = PID(Kp=1.1, Ki=0, Kd=0.005, setpoint=target_y) 
 
                # Calculate the PID output for x and y directions 
                pid_output_x = pid_x(x) 
                pid_output_y = pid_y(y) 
 
                # Update the coordinates of the red dot - THIS NEEDS TO 
UPDATE THE WATER NOZZLE POSITION 
                x += pid_output_x 
                y += pid_output_y 
 
                # Ensure that the red dot remains within the dimensions 
of the image 
                x = max(0, min(x, 639)) 
                y = max(0, min(y, 479)) 
 
                # Draw the red dot for the top point of the water stream 
                cv2.circle(rgb_image, (int(x),int(y)), 1, (0, 0, 255), 
5) 
                print(top_point) 
                # Draw the blue dot for the target point 
                cv2.circle(rgb_image, (target_x, target_y), 1, (255, 0, 
0), 5) 
 
                if x == target_x and y == target_y: 
                    consecutive_frames += 1 
                else: 
                    consecutive_frames = 0 
        else: 
            image_list.insert(0, enhanced_rgb_image) 
            if len(image_list) > 50: 
                image_list.pop() 
 
        fgmask = fgbg.apply(enhanced_rgb_image) 
        # rgb_image = cv2.addWeighted( rgb_image, 0.5, fgmask, 0.5, 0) 
 
        # Render image in opencv window 
        cv2.imshow("RGB stream", fgmask) 
        cv2.imshow('difference image', difference_image) 
        cv2.imshow("Depth Stream", depth_color_image) 
        cv2.imshow("rgb image",rgb_image) 
        key = cv2.waitKey(1) 
        # if pressed escape exit program 
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        frame_count += 1 
 
        # if frame_count == 80: 
        #     cv2.imwrite("frame_80_fgmask.jpg", fgmask) 
         
        # if frame_count == 81: 
        #     cv2.imwrite("frame_81.jpg", rgb_image) 
         
        # if frame_count == 82: 
        #     cv2.imwrite("frame_82.jpg", rgb_image) 
 
        # if frame_count == 83: 
        #     cv2.imwrite("frame_83.jpg", rgb_image) 
 
        # if frame_count == 84: 
        #     cv2.imwrite("frame_84.jpg", rgb_image) 
 
 

        if key == 27: 
            cv2.destroyAllWindows() 
            break 
 
finally: 
    pass 
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Appendix 4: Combined Code 

#importing libraries 
import cv2 #imports 
import pyrealsense2 as prs2 #import pyrealsense2 
import numpy as np 
import math 
import time,board,busio 
import adafruit_mlx90640 
from gpiozero import AngularServo, Device 
from gpiozero.pins.pigpio import PiGPIOFactory  
Device.pin_factory = PiGPIOFactory() 
import os     #importing os library so as to communicate with the system 
os.system ("sudo pigpiod") #Launching GPIO library 
time.sleep(1) # As i said it is too impatient and so if this delay is 
removed you will get an error 
import pigpio #importing GPIO library 
from simple_pid import PID 
 

Pipeline=prs2.pipeline() #the pipeline's purpose is to oversee the 
dataflow from the depth camera/bag file 
Configuration=prs2.config() #produce configuration to allow the program 
to work with the intel realsense depth camera 
Configuration.enable_stream(prs2.stream.color, 640, 480, 
prs2.format.bgr8, 15) 
Configuration.enable_stream(prs2.stream.depth, 640, 480, 
prs2.format.z16, 15) 
Object=prs2.align(prs2.stream.color) #ensures the RGB and depth data is 
synchronised 
Pro=Pipeline.start(Configuration) #begins the pipeline 
 
pitch = AngularServo(17, min_angle=-90, max_angle=90) 
yaw = AngularServo(18, min_angle = -90, max_angle=90) 
ESC=27  #Connect the ESC in this GPIO pin 
pi = pigpio.pi(); 
 
def set_water_nozzle(water_nozzle): 
    if water_nozzle: 
        pi.set_servo_pulsewidth(ESC, 2000) 
    else: 
        pi.set_servo_pulsewidth(ESC, 0) 
 
#thermal camera setup 
i2c = busio.I2C(board.SCL, board.SDA, frequency=800000) # setup I2C 
mlx = adafruit_mlx90640.MLX90640(i2c) # begin MLX90640 with I2C comm 
print("MLX addr detected on I2C", [hex(i) for i in mlx.serial_number]) 
mlx.refresh_rate = adafruit_mlx90640.RefreshRate.REFRESH_4_HZ # set 
refresh rate 
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mlx_shape = (24,32) 
frame =  [0] * 768  
frames=Pipeline.wait_for_frames() 
color_frame = frames.get_color_frame() 
cv2.imwrite("background.jpeg", np.asanyarray(color_frame.get_data())) 
#reading the video file 
#rgb_video = 
cv2.VideoCapture("C:\\Users\\finta\\OneDrive\\Documents\\Year 
3\\Python\\Fire Videos Bibal\\rgb_raw_T4.avi") 
#thermal_video = 
cv2.VideoCapture("C:\\Users\\finta\\OneDrive\\Documents\\Year 
3\\Python\\Fire Videos Bibal\\thermal_raw_T4.avi") 
#depth_video 
 
# Get the video dimensions 
#frame_width = int(rgb_video.get(cv2.CAP_PROP_FRAME_WIDTH)) 
#frame_height = int(rgb_video.get(cv2.CAP_PROP_FRAME_HEIGHT)) 
 
# Make a list of images 
image_list = [] 
depth_list = [] 
zero_list = [0,0] 
water_nozzle = False 
set_water_nozzle(water_nozzle) 
 
#Define the codec and create VideoWriter object 
fourcc = cv2.VideoWriter_fourcc(*'mp4v') 
output_video_result = cv2.VideoWriter('result.mp4', fourcc, 30.0, (640, 
480)) 
output_video_thermal = cv2.VideoWriter('thermal.mp4', fourcc, 30.0, 
(640, 480)) 
output_video_rgb = cv2.VideoWriter('rgb.mp4', fourcc, 30.0, (640, 480)) 
 
#looping through the video frames 
while True: 
    frames=Pipeline.wait_for_frames() 
    color_frame = frames.get_color_frame() 
    depth_frame = frames.get_depth_frame() 
    rgb_frame = np.asanyarray(color_frame.get_data()) 
     
    mlx.getFrame(frame) 
    framesFromThermal=(np.reshape(frame,mlx_shape)) #obtain each frame 
from thermal source 
    framesFromThermal=cv2.resize(framesFromThermal,(640,480)) #resize 
the frame to 800x400 
    thermal_cam=np.uint8(framesFromThermal)     
 
    #ret, rgb_frame = rgb_video.read() 
    #ret, thermal_frame = thermal_video.read() 
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    # Make a copy of the rgb frame to draw contours on 
    result = rgb_frame.copy() 
    rgb_frame_copy = rgb_frame.copy() 
 
    ##FIRE DETECTION## 
    #THERMAL# 
    # Apply binary thresholding to find the fire 
    _, thresh_fire = cv2.threshold(thermal_cam, 70, 255, 
cv2.THRESH_BINARY) 
 
    # Find contours of the thermal fire location 
    _, thermo_contours, _ = cv2.findContours(thresh_fire, 
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) 
 
    # Find the largest contour and only display that 
    sorted_contours = sorted(thermo_contours, key=cv2.contourArea, 
reverse=True) 
    #fire_contour = sorted_contours[0] 
 
    # Draw the contours on the thermal frame 
    if len(sorted_contours) > 0 and cv2.contourArea(sorted_contours[0]) 
> 100: 
        cv2.drawContours(thermal_cam, sorted_contours[0], -1, (0, 255, 
0), 3) 
        M = cv2.moments(sorted_contours[0]) 
        # Thermal location of fire 
        cx = int(M['m10']/M['m00']) 
        cy = int(M['m01']/M['m00']) 
        cv2.circle(thermal_cam, (cx,cy), 5, (0, 0, 255), -1) 
    else: 
        cx = 640 
        cy = 480 
    #THERMAL END# 
 
    #RGB# 
    # Define the range of colours to detect 
    lower_fire = np.array([150, 200, 200]) 
    upper_fire = np.array([255, 255, 255]) 
 
    hsv = cv2.cvtColor(rgb_frame, cv2.COLOR_BGR2HSV) 
 
    # Create a mask for the fire 
    mask = cv2.inRange(hsv, lower_fire, upper_fire) 
     
    #find the contour of the rgb fire location 
    _, rgb_contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, 
cv2.CHAIN_APPROX_NONE) 
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    # Draw the contours on the rgb frame 
    cv2.drawContours(rgb_frame, rgb_contours, -1, (0, 255, 0), 3) 
    #RGB END# 
 
    #SEE IF RGB and THERMAL agree# 
    # if rgb_contours are within a 50 pixel radius of the 
thermal_contours, show the thermal_contours 
    # Calculates the centre of each rgb_contour 
    for rgb_contour in rgb_contours: 
        M = cv2.moments(rgb_contour) 
        if M["m00"] != 0: 
            tx = int(M['m10']/M['m00']) 
            ty = int(M['m01']/M['m00']) 
        else: 
            # May cause an error 
            tx = 0 
            ty = 0 
 
        distance = np.sqrt((cx - tx)**2 + (cy - ty)**2) 
 
        if distance <= 50 and len(sorted_contours) >0: 
            water_nozzle = True # turn water nozzle is on with arduino 
pin, may need to initiliase as false 
            set_water_nozzle(water_nozzle)             
            cv2.drawContours(result, sorted_contours[0], -1, (0, 255, 
0), 3) 
            cv2.circle(result, (cx,cy), 5, (0, 0, 255), -1) 
            fx = cx 
            fy = cy 
            dist_fire = depth_frame.get_distance(fx, fy) 
            print(dist_fire) 
            cv2.circle(result, (tx,ty), 5, (255, 0, 0), -1) 
        else: 
            water_nozzle = False 
            set_water_nozzle(water_nozzle) 
            break 
    #END OF SEE IF RGB and THERMAL agree# 
    #OUTPUTS fx, fy which is the fire location# 
    ##END OF FIRE DETECTION## 
     
    ##WATER STREAM DETECTION## 
     #convert the rgb frame to lab 
    rgb_lab = cv2.cvtColor(rgb_frame_copy, cv2.COLOR_BGR2LAB) 
    l, a, b = cv2.split(rgb_lab) 
    l = cv2.add(l, -100) 
    l = np.clip(l, 0, 255) 
    clahe = cv2.createCLAHE(clipLimit=1.0, tileGridSize=(8,8)) 
    cl = clahe.apply(l) 
    limg = cv2.merge((cl,a,b)) 
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    enhanced_rgb_image = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR) 
    gray = cv2.cvtColor(enhanced_rgb_image, cv2.COLOR_BGR2GRAY) 
 
    #Read background image 
    background = cv2.imread("background.jpeg") 
 
    # enhance background image 
    background_lab = cv2.cvtColor(background, cv2.COLOR_BGR2LAB) 
    l, a, b = cv2.split(background_lab) 
    l = cv2.add(l, -100) 
    l = np.clip(l, 0, 255) 
    clahe = cv2.createCLAHE(clipLimit=1.0, tileGridSize=(8,8)) 
    cl = clahe.apply(l) 
    limg = cv2.merge((cl,a,b)) 
    enhanced_background_image = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR) 
    background_gray = cv2.cvtColor(background, cv2.COLOR_BGR2GRAY) 
 
    # adjust brightness of background 
    background_gray = cv2.add(background_gray, -30) 
    background_gray = np.clip(background_gray, 0, 255) 
 
    # Compute the absolute difference between the current frame and the 
background 
    difference_image = cv2.absdiff(background_gray, gray) 
 
    ##WATER STREAM PICUTRE OUTPUT, EXTRACT WHITE BITS## 
 
    # detects water stream if water nozzle is on, if so runs 
    if water_nozzle == True: 
        print('Detecting water stream') 
        background_mean = np.mean(image_list[20:40], axis=0) 
        cv2.imwrite("background.jpeg", background_mean) 
        # find contours 
        _, thresh = cv2.threshold(difference_image, 60, 255, 
cv2.THRESH_BINARY) #best value needs to be found. 60 does not detect all 
of floor image 
        contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, 
cv2.CHAIN_APPROX_NONE) 
        # if the contour area is greater than 3000, draw a circle on the 
top point and draw the contour of the water stream 
        water_sorted_contours = sorted(contours, key=cv2.contourArea, 
reverse=True) 
        if cv2.contourArea(water_sorted_contours[0]) > 3000: 
            contour = water_sorted_contours[0] 
            y_coordinates = [point[0][1] for point in contour] 
            top_point = 
contour[y_coordinates.index(min(y_coordinates))][0] 
            cv2.drawContours(result, [contour], -1, (0, 255, 0), 3) 
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            ### NEEDS TO BE CALIBRATED ### DISTANCE MATTERS, CONSIDER 
DEPTH CAMERA 
            # Pixel to angle ratio yaw 
            pixel_to_angle_ratio = 115/640 
            const = -65 
 
            # Pixel to angle ratio pitch 
            #pixel_to_angle_ratio_pitch = 480/100 
             
            # Target coordinates - NEED TO BE DEFINED BY FIRE 
            target_x = fx 
            target_y = fy 
 
            # Initialize the PID controllers for x and y directions 
            pid_x = PID(Kp=1.1, Ki=0, Kd=0.005, setpoint=target_x) 
             
            # define x and y 
            x = top_point[0] 
             
            # Calculate the PID output for x and y directions 
            pid_output_x = pid_x(x)  
             
            # Update the coordinates of the red dot - THIS NEEDS TO 
UPDATE THE WATER NOZZLE POSITION 
            x += pid_output_x 
             
            # Ensure that the red dot remains within the dimensions of 
the image 
            x = max(0, min(x, 639)) 
             
            # Convert the pixel coordinates to angles 
            yaw_output_angle = const+(x*pixel_to_angle_ratio) 
            pitch_output_angle = (dist_fire - 4.5933)/0.0403 
 
            # # Send the angle value to the Arduino board as a PWM 
signal 
            # WRITE TO ARDUINO 
            yaw.angle = (yaw_output_angle) 
            pitch.angle = (pitch_output_angle)  
 
            # Draw the red dot and the blue dot on the image 
            cv2.circle(result, (int(x),top_point[1])), 1, (0, 0, 255), 
5) 
            print(top_point) 
 
            # Draw the blue dot for the target point 
            cv2.circle(result, (target_x, target_y), 1, (255, 0, 0), 5) 
 
            # if x == target_x and y == target_y: 
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            #     consecutive_frames += 1 
            # else: 
            #     consecutive_frames = 0 
    else: 
        image_list.insert(0, enhanced_rgb_image) 
        if len(image_list) > 50: 
            image_list.pop() 
 
     
    output_video_result.write(result) 
    output_video_thermal.write(thermal_cam) 
    output_video_rgb.write(rgb_frame) 
 

    # cv2.imshow('Enhanced Thermal', enhanced_thermal_frame) 
    cv2.imshow('Result', result) 
    cv2.imshow('Thermal',thermal_cam) 
    cv2.imshow('Rgb',rgb_frame) 
     
    #output_video.write(result) 
 
    #exiting with pressing 'q' 
    if cv2.waitKey(24) & 0xFF == ord('q'): 
        break 
 
#releasing and destroying windows 
#rgb_video.release() 
output_video_result.release() 
output_video_thermal.release() 
output_video_rgb.release() 
cv2.destroyAllWindows() 
 

 


