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Abstract

In 2022, there were 184,437 fires in England, which caused millions of pounds in
damages and harmed hundreds of lives (Office, 2023). Fires continue to prove
incredibly dangerous to society. To improve our firefighting abilities, the use of
firefighting drones is being explored. One aspect of firefighting drones yet to be
researched is the development of code which can redirect a water stream onto a fire.
In order to redirect a water stream onto a fire, the water stream and the fire must be
detected from a video feed. This project develops basic fire detection code and novel
water stream detection code from recorded videos. These codes are subsequently
combined to produce code which can accurately move a water stream onto a fire.
This report presents the developed code and, the approach taken to create it,
followed by demonstrating the results from experimental testing. Finally, the project

discusses the codes limitations and scopes for improvement.
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Chapter 1: Introduction

1.1 Introduction

Fires can be incredibly destructive, posing significant risks to human life, property,
and the environment. Each year, fires cause millions of pounds worth of damage and
claim thousands of lives worldwide. In England alone, there was a total of 185,437
fires and 276 fire-related deaths in 2022 (Office, 2023). Firefighting has become a
crucial service within our communities with firefighters often putting their lives at risk.
From 1986 to 2013, 26 firefighters died in England whilst fighting fires, exemplifying
the dangers of firefighting (Office, 2023).

Traditionally, firefighting teams are deployed with fire engines, equipped with water,
hoses and other specialist gear. The optimisation of firefighting techniques, paired
with improvements in fire education and legislation has resulted in a 39% decrease in
the number of fires over the last 18 years in England, from 474,000 in 2004 to
184,437 in 2022 (Office, 2023).

To further improve humanities firefighting capabilities and to stop endangering human
lives whilst fighting fires, the use of firefighting drones is being explored. Firefighting
drones have several benefits over traditional firefighting techniques, they can access
areas inaccessible to humans, provide a better vantage point and give extensive
information about the nature of the fire - such as its source. Currently firefighting
drones are used for search and rescue, aerial surveillance and fire detection (Akhloufi
et al., 2021) (Bullock, 2020).

Several companies are exploring the use of firefighting drones. Latvian company
Aerones developed a firefighting drone which can climb 300 m in 6 minutes (Peter,
2018). The London Fire Brigade uses drones to provide an aerial view of incidents,
improving their response (London Fire Brigade, 2023). Chinese company EHang has
developed a manned firefighting drone called the EHang 216F which can deliver 6
fire extinguisher projectiles and a high-pressure water jet using a laser aiming device
(EHang, 2014). Despite the current advances, there are still significant challenges to

fully utilise the potential of firefighting drones.

One important aspect limiting the widespread deployment of firefighting drones is the
need for human operators. The deployment of large numbers of drones is limited by
the number of trained drone operators. Thus, automating fire-fighting drones will
enable deployment of a large numbers of efficient drones, which due to the lack of

human operators, have lower operational costs.



This report aims to advance the development of firefighting unmanned aerial vehicles
(UAV’s) by automating the water nozzle aiming. Currently, the accuracy of firefighting
UAVs is limited by the operator's ability to aim the water stream. Whilst fighting fires,
the optimal location to aim at is the fires base. Humans cannot see the base of a fire;
therefore they must estimate its location. An autonomous drone that uses a thermal
camera can highlight and target a fires thermal hotspot (base), removing human error

and improving the efficiency with which a firefighting drone extinguishes a fire.

This project aims to deliver software that uses python and the computer vision library
OpenCV (Pypi, 2023) to analyse thermal, depth and Red Green Blue (RGB) video
footage to identify the location of a fire and the position of a water stream. Then, a
piece of code which combines the fire and water stream detection codes was written,
to output a pitch and yaw angle to the water nozzle, to accurately reposition the water
stream onto the fire. The report evaluates the effectiveness of the combined code,

highlights its limitations and suggests future work for improvements.

1.2 Aim

The aim of this project is to develop fire and water stream video recognition software

to accurately aim and shoot a water stream at a fire.
1.3 Objectives

1. Develop vision-based fire recognition software in python using OpenCV which
utilises a RealSense D435i depth sensor and a MLX90640 thermal camera to
locate and track fires.

2. Test the fire recognition software from Objective 1 on videos of fires to
establish its effectiveness.

3. Develop vision-based water stream detection software in python using
OpenCV which utilises a RealSense D435i depth sensor and a MLX90640
thermal camera to detect a water stream.

4. Undertake an experiment to obtain thermal, RGB and depth videos of a water
stream, then test the water stream detection software on these videos.

5. Combine and develop software from Objectives 1 and 4 to accurately aim the
water stream at the base of a fire.

6. Test software developed in Objective 5 by using it to control the shooting of

water stream at a fire.



1.4 Report Layout

The report is split into 7 chapters:

e Chapter 1 introduces the project, detailing its purpose and motivations.

e Chapter 2 contains the first coding challenge of the project, fire detection. The
chapter covers the method used to detect fire and evaluates its success
through testing on pre-recorded videos.

e Chapter 3 details the development of water stream detection code, the
success of the code and its limitations.

e Chapter 4 develops code to move a target point onto the location of the water
stream using a proportional integral derivative (PID) controller.

e Chapter 5 details how the code must be modified to effectively aim the water
stream at the base of a fire.

o Chapter 6 combines the code from all previous chapters to move a water
stream onto a fire in real time and displays the final test’s results.

e Chapter 7 concludes the project, highlights its limitations and suggests scopes

for further work.



Chapter 2: Fire Detection

2.1 Introduction

Traditional fire detection methods, such as heat and smoke detectors, have been
widely used successfully for decades. These devices are limited in their application
and accuracy, as they can only cover limited enclosed areas, offer delayed detection,
produce numerous false alarms and have limited sensing capabilities (AZoSensors,
2012). As technology has advanced, the implementation of alternative fire detection

techniques such as video detection have been explored.

Many of the currently available VFD algorithms prioritize the detection of both smoke
and flames, in contrast to earlier papers that focused solely on the detection of flames
(Phillips et al., 2001). Smoke tends to spread faster than flames, enabling earlier
detection of fires. It is an excellent indicator that a fire is occurring however it does

not offer any meaningful location data, key information to extinguish a fire.

A perfect VFD algorithm is yet to be created due to the large variability of light,
shapes, movement and colour of different detection environments. Present flame
detection algorithms utilise flames unique characteristic such as their colour, shape,
dynamic texture and flickering to identify them (Gaur et al., 2020). Cetin et al (2013)
claimed the application of both RGB and infrared (IR) cameras improves the

accuracy of VFD algorithms, thus this project uses both a RGB and thermal camera.

Many contemporary VFD algorithm’s that only use a RGB camera harness deep
learning algorithms such as convolutional neural networks, a type of neural network
designed for image recognition that can automatically learn and identify features
within an image (Saponara et al., 2020) (Frizzi et al., 2016). These techniques are

beyond the scope of this project and were not explored.

This project does not attempt to advance the state of fire detection techniques, it
seeks to develop an algorithm to reposition a water stream onto the base of a fire. To
create successful aiming code, working VFD code is required. This chapter presents

a VFD algorithm, that utilises a fires colour and heat properties to identify fires.
2.2 Methodology

Two key, widely recognised characteristics of fires are their heat and orange-based
colour. The VFD algorithm developed uses these characteristics to identify fires,

highlighting the location of thermal hotspots from the thermal camera and the location



of fire-coloured objects within the RGB camera. If an object was both orange and hot

it was assumed to be a fire.

This project deals with the aiming of a water stream at a fire for a firefighting UAV, it
assumes the drone has already found the broad location of a fire and is positioned
such that the fire could be extinguished. Considering a fire is within the frame, the

hottest orange coloured object is likely a fire.

To test the accuracy of the VFD algorithm, Dr Kaddouh provided 4 raw RGB and
thermal videos from previously conducted firefighting UAV tests (Kaddouh, 2022).
These videos were used to develop and test the VFD algorithm. The flowchart in

Figure 2.1 shows how the VFD algorithm works:

Yes Has "q" been pressed NEXT FRAME
or has thevideo <
ended?

Has the for loop finished?

l Yes

Is the distance between
any RGB contour and the
largest thermal contour
less than 50 pixels?

i Yes

Figure 2.1: Flowchart of VFD algorithm

,

No




The thermal frame was converted from the RGB colour space into the LAB colour
space to adjust the frames brightness. A brighter frame was used to create more
contrast within the greyscale image and enable easier contour extraction. Figure 2.2
and Figure 2.3 show how an increase in the brightness allowed easier detection of

thermal contours, Figure 2.3 contains a more visible thermal hotspot.

Figure 2.2: Raw thermal frame

Figure 2.3: Processed thermal frame

The location of the fire was chosen to be at the centre of the largest thermal contour,
rather than the centre of RGB contours, since the optimal location to shoot when
extinguishing a fire is the fires hotspot (base), not the fires flames. Guidance for using

a fire extinguisher as indicated by Edwards (2022) supports this assumption.

The location of the flames (RGB contours) and the base of the fire (thermal contour)
did not align, therefore if the RGB contour was sufficiently close to the thermal
contour, the thermal contour was identified as a fire. This distance value and other
threshold values was chosen through systematic trial and error by observing the

values that resulted in the best fire detection.

2.3 Results
Table 2.1: Success of VFD algorithm
Fire Detected Fire Accuracy

Video | Total Frames | Frames Frames False Positives (%)

1 359 0 2 2 0

2 643 320 235 2 72.8

3 933 322 260 3 79.8

4 1309 673 500 2 74.0

Table 2.1 shows the results of the VFD algorithm. The detected fire frames are the

total number of frames the code detected fire. The fire frames are the total number of

frames that actually contained a fire. False positives are the number of frames where

the code detected a fire despite none being present. Accuracy is defined as:

Accuracy (%) =

Detected Fire Frames — False Positives

Fire Frames

ES
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The total frames were calculated by adding a frame count to the code, after each
frame, the frame count increased by one. The detected fire frames count worked in a
similar way, but it only increased if the algorithm detected a fire. Human judgement

was used to determine the true number of fire frames; it may be inaccurate.

Video 1 was disregarded as there was no fire within the video. The mean accuracy of
videos 2, 3 & 4, was 75.5%. The thermal fire detection is shown in Figure 2.4 and the

RGB fire detection is shown in Figure 2.5:

Figure 2.4: Thermal frame fire detection Figure 2.5: RGB frame fire detection

The final resultant fire detection is shown in Figure 2.6, the red dot represent the

centre of the fire contour and the location of the fire.

Figure 2.6: Fire detection

2.4 Discussion

Compared to contemporary VFD algorithms, the resultant success rate of 75.5% was
relatively low. Cetin et al. (2013) evaluated 3 RGB detection methods across a wide
range of different videos, he found an average success rate ranging from 78.4% to
87% accuracy. These methods utilised smoke detection and did not have access to a
thermal camera so a direct comparison cannot be made. The 3 methods Cetin et al.

evaluated would likely have a higher detection rate if paired with a thermal camera.

The primary explanation for the algorithm’s failure to detect all incidents of fire is due
to limitations of the thermal camera. When far from the fire, the thermal camera failed
to highlight the thermal hotspots. Subsequently, a fire was not highlighted as the
algorithm needs both a positive thermal and RGB detection to identify a fire. All actual

fire frames were counted, regardless of distance, explaining the accuracy of 75.5%.



This project assumes the firefighting drone is positioned in a suitable location to
extinguish the fire, for significant segments in the video footage provided, this was not
true. When the drone is in position to extinguish the fire (close to the fire), the

accuracy of the developed VFD algorithm substantially increases.

The RGB fire detection code could not be used exclusively as a fire detector because
it only highlighted fire-coloured objects. Figure 2.5 depicts when the RGB fire
detection code identified a collection of false positives, on the ground to the left of the

building some non-fire, fire-coloured objects were incorrectly highlighted as fires.

The thermal fire detection could not be used exclusively as a fire detector because
some hot objects are not fires. Occasionally a seemingly random thermal contour
would appear within the test videos, causing some of the false positives in Table 2.1.
For this reason, a verification system was implemented where a fire was only

detected if both the thermal and RGB cameras both detected a fire.

The false positives detailed in Table 2.1 occurred when the coordinates of false
positives RGB fire contours were within 50 pixels of the largest thermal contour.
When the distance checker was reduced lower than 50 pixels, the number of false
positives reduced, however the fire detection accuracy also decreased. A distance

value of 50 pixels was found to be the optimal distance.

The VFD algorithm that was derived for this project has limited functionality, any hot
fire-coloured object would be highlighted as a fire, if a fire-coloured object was close
to a hot object, then the hot object would be highlighted as a fire. Fires that are not
orange, such as a gas fire, will not be identified. To ensure accurate fire detection

thermal camera must be relatively close to the fire.

The algorithm has undergone limited testing due to the projects time constraints; it

may perform better in different conditions.

2.5 Conclusions
e The VFD algorithm produced resulted in a total accuracy of 75.5%.
o The code has limited functionality, the thermal camera must be close to the
fire and a fire must already be within frame for the best results.
e The assumption that all hot orange objects are fires is not always correct and

will sometimes result in false positives.



Chapter 3: Water Stream Detection

3.1 Introduction

To reposition a water stream onto a fire, the location of the water stream must be
known. Chapter 3 shows the development of software to detect a water stream.
Extensive research suggests very little work has been done in this area, only one
research paper was found that used a water stream detection algorithm (Wu, 2016).
Wu successfully detected a water stream using colour recognition (Wu, 2016),
however Wu required very specific lighting, a still frame and the fire to be positioned

on the ground.

This project concerns a firefighting drone, which will move and operate in a multitude
of different conditions, utilising a colour recognition method similar to WU is

unsuitable for the diverse range of operating settings.

Initially, experiments were conducted to collect footage from a thermal, RGB and
depth camera to analyse and determine the best detection method. Several different
water stream detection methods such as background subtraction, colour detection
and moving object detection were tested on all the available cameras. Chapter 3
explains which water stream detection method was chosen and why, how the water

stream detection code works, evaluates its effectiveness and highlights its limitations.
3.2 Methodology

The main premise behind the developed water stream detection algorithm is the
utilisation of the OpenCV function cv2.absdiff, which displays the differences between

two images as white and the similarities as black.

A still image taken just before the water stream starts is compared to a frame of the

live water stream feed, this technique only required the use of the RGB camera.

The flowchart in Figure 3.1 shows how the water stream detection code works:



?

Has "q" been
presed or has
NEXT FRAME "~ thevideo Yes
ended?
No
No | &
ves s image list longer No the water stream
‘than 50? turned on?
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Does the largest contour in
sorted contours have an
area larger than 3000
pixels?

No

<&
<

Figure 3.1: Flowchart of water stream detection algorithm




Locating the water stream with the thermal camera is not possible because difference
in temperature between the water stream and the background is not enough to be
detected by the MLX90640 thermal camera.

The depth camera could not be used to locate the water stream because the location
of the water stream on the depth camera does not align with the location of the water
stream on the RGB camera. The water stream appears as black on the depth stream
colour map with a depth of 0 m as a parabola. A comparison of a RGB and a depth

frame can be seen in Figure 3.2, Figure 3.3 and Figure 3.4:

Figure 3.4: Comparison of RGB and depth water stream location

The water streams depiction as a black parabola is an error by the RealSense D435i
depth sensor. The depth sensor works similarly to human eyes depth perception,
using two cameras that are a known distance apart, by comparing their output, depth
is calculated (IntelRealSense, 2019). The water stream appears directly in front of the
two depth cameras; thus the two different cameras display vastly different images.
The difference between the 2 camera frames is so vast that the depth sensor is
unable to calculate the distance to the water stream, thus it is displayed as at 0 m as
its distance is undefined. The same water stream is displayed in two separate

locations, producing the parabola seen in Figure 3.3.

The RGB camera was used to detect the water stream as the using the thermal and
the depth cameras was not possible. Colour detection is an inadequate technique as

the water stream changes colour with changes in the background and lighting.
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The function OpenCV function cv2.createBackgroundSubtractorMOG2() was
explored, cv2.createBackgroundSubtractorMOG2() creates a static background from
which it subtracts the current frame, leaving the moving objects (GeeksforGeeks,

2020). The result of testing on the water stream footage are shown in Figure 3.5:

Figure 3.5: Water stream detection using cv2.createBackgroundSubtractorMOG2()

The water stream is detected in Figure 3.5, however there is also extensive noise
caused by movements of the camera, shown as other white areas.
cv2.BackgroundSubtractorMOG2 was not used in the water stream detection
algorithm as there are insufficient input variables. Whilst the History (number of
frames used to initialise the background) and VarThreshold (determines whether a
frame belongs to the foreground or background) can be controlled, the configuration

of the water nozzle (whether it is switched on or off), cannot be inputted.

The OpenCV function cv2.absdiff was chosen as the optimal technique to detect the
water stream as it works very similarly to cv2.BackgroundSubtractorMOG2 but allows

more input variables, such as the configuration of the water nozzle.

The variables, enhancement amount, contour area size and threshold values were

chosen through systematic trial and error to provide the best water stream detection.

The length of the image list was limited to 50, to limit the storage required to run the
water stream detection algorithm. The 20" to 40" frame within image list were
averaged and set as the background image to blur the movement of the camera,

reducing its associated error and enabling better detection of the water stream.

3.3 Results

A total of 8 different cases were analysed, the results are displayed in Table 3.1, the
difference image displays the image which was used to find the water stream
(labelled as difference_image in the flowchart). The RGB image displays what the

water stream detection algorithm highlighted as the water stream.

12



Table 3.1: Water stream detection results

Case

RGB Image

Difference Image

Detected

Yes

Yes

No

No

Yes

Yes

Yes

13



Yes

The water stream detection software had a detection success rate of 75%, 6 out of
the 8 cases highlighted the water stream correctly. The accuracy with which the code

detected the water stream varied with each case.
3.4 Discussion

The 75% success rate does not portray the accuracy of the water stream detection
algorithm. The accuracy of each cases water stream detection couldn’t be quantified;
whilst many cases detected the water stream very accurately, some cases included
noise (false positives) as part of the detected water stream. False positives were
included as part of the water stream due to movement of the camera relative to the
background. The ideal conditions for this code require no movement of the camera or
the background, thus the only difference between the background and RGB image
would be the water stream. Unfortunately, movement occurred from both the camera

and the background, due to the camera being carried and wind shaking trees.

In an attempt to mitigate any undesired movement, the largest contour within the
difference image was considered the water stream. Any small areas of difference
caused by the cameras moving were ignored. For the majority of cases this
assumption allowed the correct identification of the water stream, however when
camera movement caused areas of difference larger than the area of the water
stream, the water stream was incorrectly identified. Slight movement of a bright
object caused large white spots within the difference image, as anything touching
them was considered to have moved and was highlighted as a difference. The result

of cases 3 and 4 (Table 3.1) exemplify this, the sky is highlighted as a water stream.

Another reason cases 3 and 4 incorrectly highlighted the water stream is because the
water stream was very difficult to see. The angle of the camera and the lighting
conditions meant the water stream looked very similar to the background; thus it

wasn’t highlighted as a significant difference in the difference image.

The code correctly identified the water stream in cases 5, 6, and 8; however, it also
identified additional background objects as part of the water stream. This occurred

because small white areas appeared in the difference image due to camera

14



movement, and when these areas were adjacent to the water stream, they were
highlighted as part of the water stream. The OpenCV function cv2.findContours
counts a contour within the difference image as all continuous points along the
boundary of an object of the same colour. Since all objects that change within the
difference image are white, the water stream and any background changes adjacent
to it are counted as the same contour. Consequently, some non-water stream objects

were wrongly identified as part of the water stream.

The code does not work if an object (that isn’t the water stream) moves into or within
the frame after the background image has been established, as these objects are
labelled as differences. If these differences have a larger area than the water stream,

they will be incorrectly labelled as the water stream.

When the water stream is difficult to differentiate from the background such as at
night and for low light conditions, the code will not work because the water stream
cannot be seen with the RGB camera. It will not be highlighted as a difference; thus it

will not be detected as the water stream.

3.5 Conclusions

e The water stream detection algorithm correctly identified a water stream in
75% of the test cases.

e The accuracy the water stream detection algorithm detected the water stream
varied for the different cases. The highest accuracy was achieved when the
camera was kept still, and the waters stream was very visible on the RGB
camera. For further experiments, a conscious effort was made to ensure the
camera remained as still as possible.

e The developed water stream detection software only works if the water stream
can be seen by the RGB camera, in low light conditions the software does not
work.

o If there is excess movement within the cameras frame or by the camera itself,
such as if it was raining, the code will be unable to detect the water stream.

e Only a RGB camera is needed to detect a water stream

15



Chapter 4: Addition of a PID Controller

4.1 Introduction

A PID controller is a feedback control system that regulates a process or system by
continuously adjusting the control signal based on the error between the desired
setpoint and the actual process variable using three components: Proportional,

Integral, and Derivative (Panda, 2012).

Having established the location of the water stream and a fire, a PID controller can be
used to move the water stream onto the fire. Before conducting physical testing on a
live system, testing was carried out on pre-recorded videos to verify the effectiveness
of the PID controller in achieving the desired control outcomes. In recordings, it is
impossible to move the location of the water stream, therefore code was written to
move a target point onto the location of the water stream. Before conducting tests,
the PID controller was calibrated, and successful code was established. Having
conducted successful tests, the location of the water stream and the target point can

be swapped, so that the water stream moves to the target point for real life tests.
4.2 Methodology

Rather than coding a PID controller from scratch, a simple PID controller package

was imported from the Python Package Index (Pypi) (Pypi, 2021).

The simple PID controller from Pypi operates such that the PID controller is defined

with the following line of code:

pid x = PID(Kp=1.1, Ki=0, Kd=0.005, setpoint=target x)

The setpoint is the target point which the PID controller will move the x coordinate
towards. Kp, Ki and Kd define the Proportional, Integral and Derivative gains. The

PID controller is applied using the code:

pid output x = pid_x(x)

X += pid output x

The value of x was updated and moved closer to target_x with each new frame. The

PID controller code utilised two separate PID controllers, for the x and y directions.

The flowchart in Figure 4.1 depicts the addition of the PID controller code to the water
stream detection code. The dotted box represents where additions were made to the
water stream detection code. The flowchart is presented in this way to prevent the

repetition of the water stream detection code flowchart.

16
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Figure 4.1: Flowchart of PID controller algorithm
4.3 Calibration

A PID controller has 3 variables, the proportional gain (Kp), the integral gain (Ki) and

the derivative gain (Kd). Changing these variables resulted in different convergent

times, oscillations and overshoots. Mashor (2018) found using a manual tuning

method optimizes a PID controller better than using auto-tuning methods, therefore a

manual tuning method was used in to calibrate the PID controller in this project.

Table 4.1 shows how the PID controller was calibrated. Initially the Ki and Kd were

set to 0 and the Kp was increased until the system output oscillations of consistent

amplitude and period. This occurred when Kp was 2. Then the Kp was reduced until

the system converged, shown in case 1. Case 2 demonstrates the affect of a

increase in the Ki, the steady state error reduced but the amount of overshoot

increased. The increase in overshoot shown in case 2 did not justify the reduction in

steady state error, therefore Ki was set to 0. Kd improves a systems response to

changes in the setpoint. Initially Kd was set to 0.1, as seen in case 3. Case 3 resulted

in the system no longer converging, so smaller Kd of 0.005 was tested as seen in

case 4. Case 4 provided an optimal response; within 0.3 seconds the system settled.
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Table 4.1: Calibration of the PID controller

Case 1

Case 2

Distance

1

2 3
Time (s)

4 5

60

Distance
S 8 5 8

=
15

o

0

1

2 3
Time (s)

4 5

Kp=1.1,Ki=0,Kd=0

Kp = 1.1, Ki = 0.55, Kd = 0

Case 3

Case 4

600

400

Distance
o

—200

-400

—600

IR AR AR
! L

[

1

2 3
Time (s)

4 5

Distance

20

--%

0

1

2 3
Time (s)

4 5

Kp=1.1,Ki =0, Kd=0.1

Kp = 1.1, Ki =0, Kd = 0.005

4.5 Results
Table 4.2: PID controller results
Frame 81 82 83 84
Photo .

Table 4.2 shows the results using the optimal PID controller setup from case 4 in the

code. Within 4 frames the target point coincides with the water streams location.

4.6 Discussion

The code moved a target point onto the tip of the water stream. The PID controller

was setup for the best response. For further experiments, the target point, and water

stream coordinates will swap so that the water stream moves towards a target point.

4.7 Conclusion

e The optimal setup of the PID controller was Kp = 1.1, Ki = 0 and Kd = 0.005.

e PID controller code was successfully added to the water stream detection

code to a target point onto the location of the water stream
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Chapter 5: Aiming
5.1 Introduction

Chapters 2-4 established VFD, water stream detection and PID controller code.

Chapter 5 seeks to calibrate these codes to work in real time.

Before this chapter, pixel coordinates of the water streams location are known,
however these coordinates do not relate to the water stream’s actual position. The
location of the water stream within the camera frame needs to be calibrated to equal

the actual location of the water stream.
5.2 Methodology

The water stream frame coordinates do not indicate where the water stream lands,
rather they represent the peak of the water stream (shown as a star). Moving the
water stream’s pixel coordinates, to the fire’s pixel coordinates would not work as the
water stream would falls short of the fire. Figure 5.1 depicts the result of aligning the

water stream and fire coordinates.

Figure 5.1: Water stream coordinates coinciding with the fire coordinates

The water stream coordinates need to be adjusted to represent where the water
stream point of impact. Correcting the offset requires the angle of the water nozzle,
the drone location (height of drone) and the target location (if the water is hitting a
wall or the ground) to be known. Determining the correction required for every
possible arrangement is not achievable within the timeframe of this project, therefore

the project focused on one critical scenario.

Considering the safety implications associated with placing a fire on a wall, it was
deemed more practical to develop code that solely addressed extinguishing fires
located on the ground. To remove the effect of changing drone height, the drone was
fixed at a height of 0.8 m. Both the water pressure and pitch angle can control the
distance covered by the water stream, to reduce the number of changing variables

the water pressure was kept constant.

The aiming system can be split into 2 sections, the yaw and pitch angle:
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5.2.1 Pitch Angle

To determine the required input pitch angle, tests were conducted to find the
relationship between the pitch angle and the distance to where the water impacted.
The pitch of the water nozzle can operate from a minimum angle of -30° to a
maximum of 70°. For every 10°, the input pitch angle was changed and the distance
to where the water stream landed was recorded. An equation to link these variables

was found.

The distance to the fire can be found from the depth camera. If this distance and the
relationship between the pitch angle and distance to the water landing location are

known, the pitch angle required to land the water stream on a fire can be found.
5.2.2 Yaw Angle

To relate the pixel coordinates to the input yaw angle, an experiment must be
performed. The yaw of the water nozzle can operate from a minimum of -80° to
maximum of 80°. If the water nozzle is set to 80°, the water nozzle will spray to the
right of the frame, outside of the camera field of view. To calibrate the input yaw
angle with the pixel water stream coordinates, the input yaw angles required to just
enter each side of the camera frame are needed. Figure 5.2 illustrates the yaw angle
calibration. Angles x and y equal the required input yaw angles to hit the left and right

sides of the frame.

Camera Frame

Figure 5.2: Angle required for water stream to enter frame

Once these two values are known, the water streams horizontal pixel coordinate can

be converted into a yaw angle through Equation 2:

horizontal pixel coodinate = (|x| + |y|)
640

Input Yaw Angle = (2)
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Where 640 is the width of the frame in pixels.

The input yaw angle required to just enter the water frame was hypothesised to
change with changes in the input pitch angle, therefore the experiment conducted
measured the yaw angle required for the water stream to just enter the frame for

every 10° of the total range of input pitch angles.
5.3 Results
Experiment 1: Yaw angle limits

The yaw angle limits x and y were found to be -65° and 50°. The pitch angle did not

affect the yaw angle limits.

Experiment 2: Input Pitch Angle vs distance to water stream landing location

Distance (m) vs Pitch Angle (°)

7 y=0.0403x+4.5933 ...
.......... s
‘ ------------- .
6 . . ---------------- .
’E\ 5 ---------------------
g e e
g ----------- .. 4 ‘
Z o
(%]
- 3
2
1
0
-30 -20 -10 0 10 20 30 40 50 - .

Input Pitch Angle (°)

Graph 5.1: Distance (m) to water stream against input pitch angle (°)

The relationship between the input pitch angle and the distance to where the water
stream landed is shown in Graph 5.1. Equation 3 describes the line of best fit within

Graph 5.1 between distance and the input pitch angle:
Distance = 0.403 * Input Pitch Angle + 4.5933 3)

The line of best fit had a coefficient of determination of 0.8314, suggesting there is a

strong positive correlation between input pitch angle and distance.
5.4 Discussion

Equation 3 can be rearranged into Equation 4; so that the input pitch angle

determines where the water stream lands:
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| ¢ Pitch Anal _ Distance —4.5933 @
nput Pitch Angle = 0403

Experiment 1 found x to be -65° and y to be 50°, inputting these values into Equation

2 creates Equation 5:

horizontal pixel coodinate * (115)

640 — 65 (5)

Input Yaw Angle =

If the distance to a fire and the horizontal pixel coordinate of the water stream from
the water stream detection code are known, the input yaw and pitch angles needed to
hit the fire are known. The distance to the fire can be found using the coordinates of

the detected fire from the VFD code and the depth camera.

Whilst recording results, it was observed that the water stream would land across a
wide area approximately 1 m in length and 0.3 m in width. Judging the centre of this
landing area was difficult, adding error to the results. Determining the exact angle at
which the water stream entered the frame was not possible as small 1 degree

changes in the input nozzle yaw angle resulted in no observable difference in water

streams landing location.

Keeping the drone arm stationary throughout the experiment was difficult due to the
weight of the water pouch, as the arm moved it changed the trajectory of the water
stream, interfering with the results, causing error. As the water pouch ran out, the
water pressure decreased. This added a new variable which affects the results,

adding to the error.

The large landing area of the water stream counteracts the inaccuracy caused by the
calibration errors. If the calibration of the water nozzle aiming is slightly incorrect the

large landing area ensures the water stream would still land on the fire.

5.5 Conclusion

o Equation 4 and Equation 5 describe how to calculate the yaw and pitch output
angles to aim the water nozzle at a fire. These equations were used in the
final combined code to control the water nozzle.

e There was significant error in the results that determined Equation 4 and
Equation 5 which make the equations less accurate. The large landing area of

the water stream counteract these errors.
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Chapter 6: Final test

6.1 Introduction

Chapter 6 combines all the previously developed code and presents how the code

was altered to be used in real time.

Until Chapter 6, all previous code operated by analysing pre-recorded videos.
Modifying the code to operate in real time presented significant challenges. The main
issue was integrating the software and hardware. As this project is solely focused on
developing the software aspect of the firefighting drone, assistance establishing

cohesion with the hardware was provided by Dr Shival Dubey.

Having established code which ran in real time, an experiment was conducted to
establish the effectiveness of the combined code. This chapter presents the
combined real time code, shows the results of the experiment and discusses the

codes success and failures.
6.2 Health and safety

The fire experiment was carried out in a private garden to remove the risk to the
public and to limit disturbance caused by lighting a fire. The fire was lit on top of a
barbecue to remove the danger of the fire spreading and to allow the fire to be
extinguished and controlled by closing the lid. A fire extinguisher was on standby in

case of the fire got out of control. All risks were considered and mitigated.
6.3 Methodology

The code utilises all previously developed code. Initially the VFD code is used to
detect whether there is a fire and where the fire is. If a fire is detected, the water
nozzle is toggled on. Once the water stream is turned on, the water stream detection

code detects the coordinates of the water stream.

As presented in Chapter 5, the yaw angle of the water nozzle is controlled using a
PID controller, the pitch angle of the water nozzle is controlled using the previously
established relationship between pitch angle and distance. The distance to the fire is

found using the depth camera.

The flowchart in Figure 6.1 shows how the developed code from earlier chapters was

combined:

23



Has "q" been
pressed or has the

l-— —————————— = video ended?
| Equation 5, the
: relationship x and No
yaw angle NEXT FRAME
I established in
| Chapter 5:
|

Has a fire been ~ No
detected?

Equation 4, the
relationship between
distance and pitch angle
established in Chapter 5:

Use the optimal
configoration of
the PID controller

| |
| | Yes
| |
| |
| fromChapterd: |
| |
| |
|
| |
|

Figure 6.1: Flowchart of combined code

6.4 Results and Discussion

The software ran on a Raspberry Pi, taking various camera frames as inputs. After
processing the video frames, the code outputted a yaw and pitch angle to the water

nozzle, as well as the configuration of the water pump.

To observe the result of the combined code, a monitor was attached to the Raspberry
Pi, to display the output of the RGB, thermal and result video feeds. Figure 6.2 shows
the output of the RGB video feed, the fire and other fire-coloured objects were

highlighted as part of the RGB fire detection code. Figure 6.3 shows the output of the

thermal video feed, the fire was successfully highlighted as a thermal contour.

24



Figure 6.2: RGB fire detection Figure 6.3: Thermal fire detection

The thermal and RGB frames did not align due to a misalignment of the thermal and
RGB cameras. The location of the identified fire was located to the right of the actual
fire, as seen in Figure 6.4. After a short delay the result frame showed a fire was

detected, as shown in Figure 6.4.

Figure 6.4: Result frame, showing the final Figure 6.5: Result frame after the water
fire detection stream started

As a fire was detected in the result frame, the water stream was toggled on. As soon
as the water pump was toggled on and water entered the frame, the fire was no

longer detected within the result frame, as seen in Figure 6.5.

The VFD code was very temperamental, despite a RGB contour always being within
50 pixels of the thermal contour (often due to a false positive), a resultant fire was
often not detected. It is hypothesised that this occurred due to processing limitations
of the Raspberry Pi. The Depth Camera D435i’s RGB camera operates at 30 fps
(IntelRealSense, 2019). Within 1/30™ of a second the Raspberry Pi must individually

check the distance between every RGB contour and the thermal contour.

If the VFD code is not processed quick enough, it would be analysing a previous
frame instead of the live frame. This would account for the short delay between the
detection of individual RGB and thermal fires and the final fire detection. The code
requires a few seconds to calculate the distance between each RGB fire contour and

the thermal contour. The first few RGB contours in the list may be farther than 50
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pixels away from the thermal contour, despite other RGB contours being within
range. If this occurs, the water pump will turn on after a few seconds of delay when it

eventually checks a RGB contour that is within range.

In an attempt to resolve this issue, an orange bag was placed behind the fire (at a
safe distance) and the distance value was increased to 300 pixels so that most RGB
contours (even those that aren’t the fire) would trigger the detection of a fire. This
successfully toggled the pump on quicker. The success of this alteration supports the

hypothesis that there is limited processing power.

Once the water pump is toggled on, the water stream detection part of the code was
triggered. An intensive part of the code that challenges the processing power of the
Raspberry Pi, as a background frame must be subtracted from a live frame. Once the
water pump was toggled on, the water nozzle did not move. Either the water stream

was not being detected or Raspberry Pi was having processing issues.

In case the lack of movement was due to the water stream not being detected, the
background was changed. The new background is shown in Figure 6.6, this change

did not result in detection of the water stream.

Figure 6.6: Change in background

It cannot be conclusively determined whether the code unsuccessfully detected the
water stream or whether the computer was unable to process all the information. Due
to the success of earlier code and the change in background having no effect, it is

hypothesised the failure was due to the Raspberry Pi’s processing limitations.
6.5 Conclusion

o The combined code successfully ran in live conditions, the RGB, thermal and
depth camera footage were successfully read.
e The combined code analysed the code and turned the water pump on.

e The combined code was unable to move the water stream onto the fire.
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Chapter 7: Conclusion

7.1 Achievements

o VFD code was written and tested on pre-recorded videos. It achieved an
accuracy of 75.5%.

¢ Video footage was obtained of the firefighting drone firing a water stream
against a range of different backgrounds.

o Water stream detection code was successfully written and tested on the
obtained video footage, achieving a success rate of 75%.

e PID controller code was written and combined with the water stream detection
code to move a target point onto the detected water stream.

¢ The PID controller code was calibrated to find the optimal PID gain values,
these were Kp = 1.1, Ki = 0 and Kd = 0.005.

e The input yaw and pitch angles were related to the water stream detection
and fire detection codes by conducting calibration experiments.

¢ A final combined code which moves the water stream onto a fire was written.

¢ A final experiment was conducted to test the effectiveness of the final
combined code.

e The final combined code successfully ran and detected the fire, resulting in

the water pump initiating the spraying of the water stream.

7.2 Discussion

The project achieved all of its objectives. A successful VFD code was written and
tested, achieving objectives 1 and 2. The VFD code achieved an accuracy of 75.5%
on a set of 4 recorded videos. When the drone was close to the fire, the fire was

successfully detected more often.

Water stream detection code was written and tested on recorded videos, achieving a
success rate of 75%, with varying degrees of accuracy. Therefore objectives 3 and 4
were fulfilled.

The VFD code and the water stream detection code were combined with values from
an aiming calibration test and a PID controller to produce a final set of code which
could interact with a water nozzle in real time. The combined code successfully ran
and was tested on a real fire, achieving objectives 5 and 6. In the final test, the
combined code struggled with hardware processing limitations and was unsuccessful

in moving the water stream onto the fire.
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Initially code was written using recorded videos, transitioning from working with
recorded videos to a live camera feed for Chapter 6 was challenging and caused

substantial delays.
7.3 Conclusion

The project was mostly successful. All the objectives were achieved, three successful
codes were written and tested. This project provides a good start for further work into
water stream detection and aiming be built upon. The main failure of the project was

the inability to move the water stream onto a fire in the final test.
7.4 Future Work

o Further work needs to be done to test the success of the combined code. The
computer used in Chapter 6 needs to be upgraded to a computer with a better
processor so that the frames can be analysed and processed in real time.

¢ Aligning the RGB camera and the thermal camera would improve the
accuracy of the combined code.

e The VFD code could be improved by implementing more complex
contemporary VFD techniques such as deep learning algorithms.

o Water stream detection can be explored through the use of a more sensitive
thermal camera, which could detect the water stream. This would enable
water stream detection to work in low light conditions and at night, overcome
the limitations of the presented water stream detection code.

e The water stream could be coloured to test whether this improves the success
rate of the water stream detection code.

e To further develop the water stream detection code, the threshold values
could change with each change in background. A Gaussian function could be
applied to the difference image to determine the optimum threshold values for

every different background.
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Appendix 1: Fire Detection Code

import cv2
import numpy as np

rgb video =
cv2.VideoCapture("C:\\Users\\finta\\OneDrive\\Documents\\Year
3\\Python\\Fire Videos Bibal\\rgb raw_T3.avi")

thermal video =
cv2.VideoCapture("C:\\Users\\finta\\OneDrive\\Documents\\Year
3\\Python\\Fire Videos Bibal\\thermal raw T3.avi")

frame_width = int(rgb_video.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(rgb_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_fire_count = 0

frame_count = @

fourcc = cv2.VideoWriter_fourcc(*'mp4dv")
output_video = cv2.VideoWriter('output video.mp4', fourcc, 30.90,
(frame_width, frame height))

while
ret, rgb_frame = rgb video.read()
ret, thermal frame = thermal video.read()

result = rgb_frame.copy()

lower fire = np.array([9, 100, 100])
upper_fire = np.array([50, 255, 255])

hsv = cv2.cvtColor(rgb_frame, cv2.COLOR_BGR2HSV)

thermal_lab = cv2.cvtColor(thermal frame, cv2.COLOR_BGR2LAB)
1, a, b = cv2.split(thermal_lab)

1 = cv2.add(1l, 30)

clahe = cv2.createCLAHE(clipLimit=3, tileGridSize=(32,32))

cl = clahe.apply(l)

limg = cv2.merge((cl,a,b))

enhanced_thermal frame = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR)




gray = cv2.cvtColor(enhanced thermal frame, cv2.COLOR_BGR2GRAY)

_, thresh = cv2.threshold(gray, 70, 255, cv2.THRESH_BINARY)

thermo_contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_NONE)

sorted contours = sorted(thermo contours, key=cv2.contourArea,
reverse= )

if len(sorted contours) > © cv2.contourArea(sorted_contours[0])
> 100:
cv2.drawContours(enhanced thermal frame, sorted contours[@], -1,
(0, 255, 0), 3)
M = cv2.moments(sorted contours[0])
= int(M['m1@"']/M['mee’'])
cy = int(M['me1']/M['meo"'])

mask = cv2.inRange(hsv, lower_fire, upper_ fire)

rgb_contours, = cv2.findContours(mask, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_NONE)

cv2.drawContours(rgb_frame, rgb_contours, -1, (@, 255, @), 3)

for rgb_contour in rgb_contours:
= cv2.moments(rgb _contour)
if M["mee"] != o:
tx = int(M['m10']/M['mee'])
ty = int(M['mo1']/M[ 'meo’])
else
tx

ty

distance = np.sqrt((cx - tx)**2 + (cy - ty)**2)




if distance <= 50 len(sorted_contours) >0:
cv2.drawContours(result, sorted contours[@], -1, (@, 255,

cv2.circle(result, (cx,cy), 5, (0, @, 255), -1)
print(cx, cy)

cv2.circle(result, (tx,ty), 5, (255, @, 0), -1)
frame_fire_count += 1

break

output_video.write(result)

cv2.putText(result, "Frames: " + str(frame count), (50, 300),
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, @, @), 2)

cv2.putText(result, "Fire frames: " + str(frame_fire count), (50,
350), cv2.FONT_HERSHEY SIMPLEX, 1, (255, @, 0), 2)

cv2.imshow( 'Enhanced Thermal', enhanced_thermal frame)
cv2.imshow( 'Result’, result)
cv2.imshow('Thermal',thermal_ frame)

cv2.imshow( 'Rgb',rgb_frame)

frame_count += 1

output_video.write(result)

if cv2.waitKey(24) & OxFF == ord('q'):
break

rgb_video.release()
output_video.release()
cv2.destroyAllWindows ()
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Appendix 2: Water Stream Detection Code

pyrealsense2 as rs
numpy as np

cv2

argparse

os.path

parser = argparse.ArgumentParser(description="Read recorded bag file and
display depth stream in jet colormap.

Remember to change the stream fps and
format to match the recorded.")

parser.add_argument("-i", "--input", type=str, default="D:\\D
Downloads\\20230112 142006.bag", help="Path to the bag file")

args = parser.parse_args()

if args.input:
print("No input paramater have been given.")
print("For help type --help")
exit()

if os.path.splitext(args.input)[1] != ".bag":
print(“"The given file is not of correct file format.")
print("Only .bag files are accepted")
exit()

try:

pipeline = rs.pipeline()

config = rs.config()




rs.config.enable_device from_file(config, args.input)

config.enable stream(rs.stream.depth, rs.format.z16, 15)

config.enable stream(rs.stream.color, rs.format.rgb8, 15)

pipeline.start(config)

cv2.namedWindow("Depth Stream", cv2.WINDOW_AUTOSIZE)

cv2.namedWindow("“RGB Stream", cv2.WINDOW AUTOSIZE)

colorizer = rs.colorizer()

image list [1]
depth_list []
zero_list = [0,0]
water_stream =

fgbg = cv2.createBackgroundSubtractorMoG2(detectShadows=

cv2.imwrite("intel6 frame.jpg",
np.asanyarray(pipeline.wait for frames().get color frame().get data()))

while

frames = pipeline.wait for_ frames()

depth frame = frames.get depth_frame()

rgb_frame = frames.get color frame()

rgb_image = np.asanyarray(rgb frame.get data())

depth_color frame = colorizer.colorize(depth_ frame)




depth color image = np.asanyarray(depth_color_ frame.get data())

height, width = depth color image.shape[:2]

rgb_lab = cv2.cvtColor(rgb_image, cv2.COLOR_BGR2LAB)

1, a, b = cv2.split(rgb_lab)

1 = cv2.add(l, -100)

1 = np.clip(1l, @, 255)

clahe = cv2.createCLAHE(clipLimit=1.0, tileGridSize=(8,8))
cl = clahe.apply(l)

limg = cv2.merge((cl,a,b))

enhanced rgb image = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR)

background = cv2.imread("intel6_frame.jpg")

background_lab = cv2.cvtColor(background, cv2.COLOR_BGR2LAB)

1, a, b = cv2.split(background_lab)

1 = cv2.add(l, -100)

1 = np.clip(1l, @, 255)

clahe = cv2.createCLAHE(clipLimit=1.0, tileGridSize=(8,8))

cl = clahe.apply(l)

limg = cv2.merge((cl,a,b))

enhanced background image = cv2.cvtColor(limg,
cv2.COLOR_LAB2BGR)

background_gray = cv2.cvtColor(background, cv2.COLOR_BGR2GRAY)

gray = cv2.cvtColor(enhanced rgb_image, cv2.COLOR_BGR2GRAY)

cv2.add(gray, 9)
np.clip(gray, 0, 255)

background gray = cv2.add(background gray, -30)
bavkground_gray = np.clip(background gray, 0, 255)

difference_image = cv2.GaussianBlur(background gray, (5,5), 0)

difference_image = cv2.absdiff(background_gray, gray)




difference_image bgr = cv2.cvtColor(difference_image,
cv2.COLOR_GRAY2BGR)

difference_image lab = cv2.cvtColor(difference image bgr,
cv2.COLOR_BGR2LAB)

1, a, b = cv2.split(difference_image_lab)

1 = cv2.add(1l, -30)

1 = np.clip(l, @, 255)

clahe = cv2.createCLAHE(clipLimit=1.0, tileGridSize=(8,8))

cl = clahe.apply(l)

limg = cv2.merge((cl,a,b))

enhanced_difference_image = cv2.cvtColor(limg,
cv2.COLOR_LAB2BGR)

enhanced difference_image =
cv2.cvtColor(enhanced_difference image, cv2.COLOR_BGR2GRAY)

array = depth_frame.get data()
no_zeros = height*width - np.count nonzero(array)

zero_list.append(no_zeros)

if zero_list[-1] > 4000+zero_list[-2]:
water_stream =

if zero list[-1]+6000 < zero list[-2]:
water_stream =

print(water_stream)

bottom row = [depth frame.get distance(i, height-2) for i in
range(0+20, width-20)]

if (0.0 bottom_row) water_stream ==
print('Detecting water stream')
background mean = np.mean(image 1ist[10:20], axis=0)
cv2.imwrite("intel6 frame.jpg", background mean)

ret, thresh cv2.threshold(enhanced difference image, 60,
255, cv2.THRESH_BINARY)

contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_NONE)

for contour in contours:
if cv2.contourArea(contour) > 3000:
y_coordinates = [point[@][1] for point in




top_point =
contour[y_coordinates.index(min(y_coordinates))][0]

cv2.drawContours(enhanced rgb image, [contour],
-1, (@, 255, @), 3)

cv2.circle(enhanced_rgb_image, tuple(top_point),

1, (@, @, 255), 5)
print(top_point)
else:
image list.insert(®, enhanced_rgb image)
if len(image_list) > 5@:
image list.pop()

cv2.imshow( 'Enhanced difference image',

enhanced _difference image)
cv2.imshow("Depth Stream", depth_color image)
cv2.imshow("enhanced rgb image",enhanced rgb_image)
key = cv2.waitKey(1)

if key == 27:
cv2.destroyAllWindows ()
break
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Appendix 3: PID Controller Code

import pyrealsense2 as rs
import numpy as np

import cv2

import argparse

import os.path

from simple pid import PID

parser = argparse.ArgumentParser(description="Read recorded bag file and
display depth stream in jet colormap.

Remember to change the stream fps and
format to match the recorded.")

parser.add _argument("-i", "--input", type=str, default="D:\\D
Downloads\\20230112 142006.bag", help="Path to the bag file")

args = parser.parse_args()

if args.input:
print("No input paramater have been given.")
print("For help type --help")
exit()

if os.path.splitext(args.input)[1] != ".bag":
print("The given file is not of correct file format.")
print("Only .bag files are accepted")
exit()

try:

pipeline = rs.pipeline()




config = rs.config()

rs.config.enable_device from_file(config, args.input)

config.enable stream(rs.stream.depth, rs.format.z16, 15)
config.enable stream(rs.stream.color, rs.format.rgb8, 15)

pipeline.start(config)

cv2.namedWindow("Depth Stream", cv2.WINDOW_AUTOSIZE)

cv2.namedWindow("“RGB Stream", cv2.WINDOW AUTOSIZE)

colorizer = rs.colorizer()

image list [1]

depth_list [1]

zero_list = [0,0]

water_stream =

fgbg = cv2.createBackgroundSubtractorMoG2(detectShadows=

cv2.imwrite("intel6 frame.jpg",
np.asanyarray(pipeline.wait_for_ frames().get color frame().get _data()))

600
470

frame_count = @

while

frames = pipeline.wait for_ frames()

depth frame = frames.get depth frame()




rgb_frame = frames.get color frame()

rgb_image = np.asanyarray(rgb frame.get data())

depth_color_frame colorizer.colorize(depth_frame)

depth_color_image np.asanyarray(depth_color_ frame.get _data())

height, width = depth _color_image.shape[:2]

rgb_lab = cv2.cvtColor(rgb_image, cv2.COLOR_BGR2LAB)

1, a, b = cv2.split(rgb_lab)

1 = cv2.add(1l, -100)

1 = np.clip(l, @, 255)

clahe = cv2.createCLAHE(clipLimit=1.0, tileGridSize=(8,8))
cl = clahe.apply(l)

limg = cv2.merge((cl,a,b))

enhanced_rgb_image = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR)

background = cv2.imread("intel6 frame.jpg")

background_lab = cv2.cvtColor(background, cv2.COLOR_BGR2LAB)

1, a, b = cv2.split(background lab)

1 = cv2.add(1l, -100)

1 = np.clip(1l, @, 255)

clahe = cv2.createCLAHE(clipLimit=1.0, tileGridSize=(8,8))

cl = clahe.apply(l)

limg = cv2.merge((cl,a,b))

enhanced background image = cv2.cvtColor(limg,
cv2.COLOR_LAB2BGR)

background gray = cv2.cvtColor(background, cv2.COLOR BGR2GRAY)

gray = cv2.cvtColor(enhanced rgb _image, cv2.COLOR_BGR2GRAY)

cv2.add(gray, 9)
np.clip(gray, 0, 255)

background _gray = cv2.add(background gray, -30)




bavkground_gray = np.clip(background gray, 0, 255)

difference_image = cv2.GaussianBlur(background gray, (5,5), 0)

difference_image = cv2.absdiff(background_gray, gray)

array = depth frame.get data()
no_zeros = height*width - np.count_nonzero(array)

zero_list.append(no_zeros)

if zero_ list[-1] > 4000+zero_list[-2]:
water_stream =

if zero list[-1]+6000 < zero list[-2]:
water_stream =

print(water_stream)

bottom row = [depth frame.get distance(i, height-2) for i in
range(0+20, width-20)]

if (0.0 bottom_row) water_stream ==
print('Detecting water stream')
background mean = np.mean(image 1ist[20:40], axis=0)
cv2.imwrite("intel6_frame.jpg", background_mean)

ret, thresh cv2.threshold(difference_image, 60, 255,
cv2.THRESH_BINARY)

contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_NONE)

sorted contours = sorted(contours, key=cv2.contourArea,
reverse= )
if cv2.contourArea(sorted contours[@]) > 3000:
contour = sorted _contours[9]
y_coordinates = [point[@][1] for point in contour]
top_point =
contour[y_coordinates.index(min(y_coordinates))][0]
cv2.drawContours(rgb image, [contour], -1, (@, 255, 0),
E))




target _x = top_point[0]
target_y = top_point[1]

pid_x = PID(Kp=1.1, Ki=0, Kd=0.005, setpoint=target_x)
pid y = PID(Kp=1.1, Ki=0, Kd=0.005, setpoint=target y)

pid_output_x = pid_ x(x)
pid_output_y pid_y(y)

pid output x
pid output_y

max(0, min(x, 639))
max(0, min(y, 479))

cv2.circle(rgb_image, (int(x),int(y)), 1, (@, @, 255),
print(top_point)

cv2.circle(rgb _image, (target x, target y), 1, (255, 0,

if x == target x y == target y:
consecutive_frames += 1
else:
consecutive frames = 0
else:
image list.insert(@, enhanced rgb image)
if len(image_list) > 50:
image list.pop()

fgmask = fgbg.apply(enhanced rgb_image)

.imshow("RGB stream", fgmask)

.imshow( 'difference image', difference_image)
.imshow("Depth Stream", depth color image)
.imshow("rgb image",rgb _image)

= cv2.waitKey(1)




frame_count += 1

if key == 27:
cv2.destroyAllWindows ()
break
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Appendix 4: Combined Code

import cv2

import pyrealsense2 as prs2

import numpy as np

import math

import time,board,busio

import adafruit_mlx90640

from gpiozero import AngularServo, Device
from gpiozero.pins.pigpio import PiGPIOFactory
Device.pin_factory = PiGPIOFactory()
import os

os.system ("sudo pigpiod")

time.sleep(1)

import pigpio
from simple pid import PID

Pipeline=prs2.pipeline()
Configuration=prs2.config()

Configuration.enable stream(prs2.stream.color, 640, 480,
prs2.format.bgr8, 15)

Configuration.enable stream(prs2.stream.depth, 640, 480,
prs2.format.z16, 15)
Object=prs2.align(prs2.stream.color)

Pro=Pipeline.start(Configuration)

pitch = AngularServo(17, min_angle=-90, max_angle=90)
yaw = AngularServo(18, min_angle = -90, max_angle=90)
ESC=27

pi = pigpio.pi()

set_water _nozzle(water nozzle):
if water_nozzle:

pi.set servo pulsewidth(ESC, 2000)
else:

pi.set servo pulsewidth(ESC, ©)

i2c busio.I2C(board.SCL, board.SDA, frequency=800000)

mlx = adafruit mlx90640.MLX90640(i2c)

print("MLX addr detected on I2C", [hex(i) for i in mlx.serial number])
mlx.refresh rate = adafruit mlx90640.RefreshRate.REFRESH 4 HZ




mlx_shape = (24,32)

frame = [0] * 768

frames=Pipeline.wait_ for_ frames()

color _frame = frames.get color_ frame()

cv2.imwrite("background. jpeg"”, np.asanyarray(color frame.get data()))

image list = []

depth_list = []

zero_list = [0,0]

water_nozzle =
set_water_nozzle(water_nozzle)

fourcc = cv2.VideoWriter_fourcc(*'mp4dv")

output_video result = cv2.VideoWriter('result.mp4', fourcc, 30.0, (640,
480))

output video thermal = cv2.VideoWriter('thermal.mp4', fourcc, 30.0,
(640, 480))

output video rgb = cv2.VideoWriter('rgb.mp4', fourcc, 30.0, (640, 480))

while
frames=Pipeline.wait for_frames()
color_frame = frames.get _color_frame()
depth_frame = frames.get_depth_frame()
rgb_frame = np.asanyarray(color_ frame.get data())

mlx.getFrame(frame)
framesFromThermal=(np.reshape(frame,mlx_shape))

framesFromThermal=cv2.resize(framesFromThermal, (640,480))

thermal_cam=np.uint8(framesFromThermal)




result = rgb_frame.copy()
rgb_frame_copy = rgb_frame.copy()

_, thresh _fire = cv2.threshold(thermal cam, 70, 255,
.THRESH_BINARY)

_, thermo_contours, = cv2.findContours(thresh_ fire,
cv2.RETR_EXTERNAL, cv2.CHAIN APPROX SIMPLE)

sorted _contours = sorted(thermo_contours, key=cv2.contourArea,
reverse= )

if len(sorted contours) > © cv2.contourArea(sorted contours[0])
> 100:
cv2.drawContours(thermal cam, sorted contours[@], -1, (@, 255,
0), 3)
M = cv2.moments(sorted contours[0])

= int(M['m10"']/M[ 'mee"'])
cy = int(M['mo1']/M[ 'meo'])
cv2.circle(thermal cam, (cx,cy), 5, (0, @, 255), -1)
else:
cX 640
cy = 480

lower fire = np.array([150, 200, 200])
upper_fire = np.array([255, 255, 255])

hsv = cv2.cvtColor(rgb_frame, cv2.COLOR_BGR2HSV)

mask = cv2.inRange(hsv, lower_fire, upper_fire)

_, rgb_contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_NONE)




cv2.drawContours(rgb_frame, rgb_contours, -1, (@, 255, @), 3)

for rgb_contour in rgb_contours:
M = cv2.moments(rgb_contour)
if M["mee"] != o:
tx = int(M['m10']/M['mee'])
ty = int(M[ 'mo1']/M[ 'mee’])
else:

tx
ty

distance = np.sqrt((cx - tx)**2 + (cy - ty)**2)

if distance <= 50 len(sorted contours) >0:
water_nozzle =

set_water_nozzle(water_nozzle)
cv2.drawContours(result, sorted contours[@], -1, (@, 255,

cv2.circle(result, (cx,cy), 5, (0, @, 255), -1)

fx = cx

fy = cy

dist fire = depth_frame.get distance(fx, fy)

print(dist_fire)

cv2.circle(result, (tx,ty), 5, (255, 0, 0), -1)
else:

water_nozzle =

set_water nozzle(water nozzle)

break

rgb_lab = cv2.cvtColor(rgb_frame_copy, cv2.COLOR_BGR2LAB)
1, a, b = cv2.split(rgb_lab)

1 = cv2.add(l, -100)

1l = np.clip(l, @, 255)

clahe = cv2.createCLAHE(clipLimit=1.0, tileGridSize=(8,8))
cl = clahe.apply(l)

limg = cv2.merge((cl,a,b))




enhanced _rgb_image = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR)
gray = cv2.cvtColor(enhanced rgb _image, cv2.COLOR_BGR2GRAY)

background = cv2.imread("background.jpeg")

background_lab = cv2.cvtColor(background, cv2.COLOR_BGR2LAB)

1, a, b = cv2.split(background_ lab)

1 = cv2.add(1l, -100)

1l = np.clip(l, @, 255)

clahe = cv2.createCLAHE(clipLimit=1.0, tileGridSize=(8,8))

cl = clahe.apply(l)

limg = cv2.merge((cl,a,b))

enhanced _background image = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR)
background gray = cv2.cvtColor(background, cv2.COLOR BGR2GRAY)

background gray = cv2.add(background gray, -30)
background_gray = np.clip(background gray, 0, 255)

difference_image = cv2.absdiff(background_gray, gray)

if water_nozzle ==
print('Detecting water stream')
background_mean = np.mean(image 1ist[20:40], axis=9)
cv2.imwrite("background. jpeg", background_mean)

_, thresh = cv2.threshold(difference_image, 60, 255,
cv2.THRESH_BINARY)

contours, = cv2.findContours(thresh, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_NONE)

water_sorted_contours = sorted(contours, key=cv2.contourArea,
reverse= )
if cv2.contourArea(water sorted contours[@]) > 3000:
contour = water_sorted contours[0]
y_coordinates = [point[@][1] for point in contour]
top_point =
contour[y_coordinates.index(min(y_coordinates))][0]
cv2.drawContours(result, [contour], -1, (@, 255, @), 3)




pixel to_angle ratio = 115/640
const = -65

target x fx
target y = fy

pid x = PID(Kp=1.1, Ki=0, Kd=0.005, setpoint=target x)

x = top_point[0]

pid output x = pid x(x)

X += pid_output x

X = max(0, min(x, 639))

yaw_output_angle = const+(x*pixel to_angle ratio)

pitch_output_angle = (dist fire - 4.5933)/0.0403

yaw.angle = (yaw_output angle)

pitch.angle = (pitch_output_angle)

cv2.circle(result, (int(x),top_point[1])), 1, (@, @, 255),

print(top_point)

cv2.circle(result, (target x, target_ y), 1, (255, 9, 9), 5)




else:
image list.insert(@, enhanced rgb image)
if len(image_list) > 50:
image list.pop()

output_video result.write(result)
output_video_thermal.write(thermal_cam)
output_video rgb.write(rgb_frame)

cv2.imshow( 'Result', result)
cv2.imshow( ' Thermal',thermal_cam)
cv2.imshow( 'Rgb',rgb_frame)

if cv2.waitKey(24) & OxFF == ord('q'):
break

output video result.release()
output_video_ thermal.release()
output video rgb.release()
cv2.destroyAllWindows ()
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