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Abstract 

This paper presents the development of a pre-linkage control algorithm to connect a 

swarm of modular robots within a pipe environment. A finite state machine (FSM) 

approach was designed to manage robot behaviours across ten discrete states, 

supported by a conceptual framework of sensor fusion for centring, detecting, aligning, 

and connecting robots. Physical testing of candidate sensors informed the selection of 

a suitable sensor fusion layout, balancing performance, cost, and system constraints. 

A scalable simulation environment was created to develop and validate the control 

algorithm, with successful linkage of up to five robots demonstrating both functionality 

and scalability. Three physical robots were then built and tested under ROS2 control 

via Wi-Fi. Although the control algorithm proved successful in simulation, physical trials 

highlighted critical real-world limitations, particularly response delays and traction 

inconsistencies, which prevented successful linkage. The project establishes a 

foundation for future improvements to bridge the gap between simulated and physical 

robot performance. 
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Chapter 1: Introduction 

1.1. Introduction 

Pipelines are critical infrastructure for transporting essential resources such as oil, gas 

and water. Unfortunately, as pipelines age, they suffer from damage, corrosion, 

deformation and leakage, reducing network efficiency and increasing maintenance 

needs. Historically, inspections have been carried out by human workers [1], but this 

approach is limited to larger diameter pipes, exposes personal to hazardous 

environments, and is time-consuming and costly. In the UK alone, there are over 

625,000 km of sewage pipelines [2], with an average diameter of just 15 cm [3] – far 

too small for human access. 

To overcome these challenges, tethered CCTV rovers are commonly used. While 

effective, cable management issues and the high costs of deployment and footage 

analysis limit their efficiency. Autonomous robot inspection offers a promising 

alternative, with the potential to improve speed, safety, and coverage [4]. Although 

various specialised pipe inspection robots have been developed in laboratory settings 

([4], [5], [6], [7]), none have successfully transitioned to commercial use. Current 

commercial solutions remain largely tethered and manually operated. 

Operating underground presents major challenges for robotic systems. GPS signals 

are unavailable, and communication links are unreliable, making external localisation 

and control infeasible. Robots must instead rely on onboard sensors to localise, 

navigate, and make autonomous decisions in highly constrained, unpredictable 

environments. Autonomy not only reduces the need for constant human supervision 

but also enables faster, more efficient inspections across complex pipe networks where 

human access is impossible. 

A further key challenge is adapting to the highly variable conditions within real-world 

pipes, such as sudden changes in pipe diameter, debris, steps, and bends. In this 

context, modular robots offer significant advantages. Drawing on developments in the 

field of self-reconfigurable robotics, modular systems can physically link together to 

share traction, overcome obstacles, and adapt dynamically to different environments. 

Unlike single rigid robots, modular swarms can increase their collective resilience, 

enabling access to areas that would otherwise be unreachable.  
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In collaboration with a larger team, this project seeks to address these challenges by 

developing a swarm of modular, collaborative, physically linking robots capable of 

overcoming obstacles inside pipes. Specifically, this individual project focuses on 

designing and testing the pre-linkage control algorithm — the stage where initially 

disconnected modular robots autonomously detect, approach, and connect to each 

other in preparation for collective movement.  

The structure of this report is as follows: Chapter 2 presents a literature review of 

existing approaches to pipe robot locomotion, linking, navigation, control, and 

simulation, Chapter 3 introduces the proposed control algorithm, Chapter 4 details the 

sensor selection process and physical sensor testing, Chapter 5 presents the 

development and testing of the simulation environment, Chapter 6 describes the 

physical system implementation and experimental results and Chapter 7 provides 

conclusions and recommendations for future work. 

1.2. Individual Project Aims 

The aim of this project is to develop, test and integrate a pre-linkage swarm control 

algorithm to connect a swarm of modular robots.  

1.3. Individual Project Objectives 
1. Conduct a literature review, investigating existing in-pipe robot localisation, 

navigation, linking mechanisms, control strategies and simulation practices 

2. Develop a pre-linkage control algorithm concept and a suitable sensor fusion 

strategy 

a. Outline a control algorithm to link a scalable number of modular robots. 

b. Identify potential sensor configurations 

c. Perform experimental testing on individual physical sensors to validate 

performance and select the most appropriate sensors 

3. Develop and validate a pipe simulation environment to test the control algorithm 

a. Create scalable modular robot models with verified sensors and 

actuator plugins in a pipe world simulation 

b. Implement and test the control algorithm within the simulation to 

evaluate its functionality, scalability and robustness 

4. Develop and validate a physical prototype system 

a. Build physical modular robots with selected sensors and actuators, 

controllable over Wi-Fi using ROS2 communication 

b. Test and validate the control algorithm in a physical pipe environment  
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Chapter 2: Literature Review 

2.1. Pipe Robot Locomotion and Obstacle Challenges 

The locomotion mechanisms employed by in-pipe robots vary widely, from wheeled 

and tracked designs to screw-drive and snake-inspired systems. Each approach is 

developed with the aim of traversing the confined and often irregular geometries of 

pipelines reliably. Wheeled robots are noted for their simplicity and speed; however, 

they often struggle with rough terrain, low traction causing wheel slippage and sudden 

changes in ground height [7] [6]. In contrast, tracked, screw-drive, and snake-inspired 

systems benefit from increased traction and stability but tend to require more complex 

mechanisms and are frequently tailored to a single, unchanging pipe diameter [8]. 

Although extensive simulation and controlled experimentation have optimised 

individual locomotion strategies, very few systems have addressed the cumulative 

impact of several naturally occurring obstacles within operational pipelines – such as 

sequences of obstacles such as steps and bridges.  

The Pipebots project, was created to develop robotic platforms for autonomous 

inspection of underground pipes. The project envisioned the collaboration of multiple 

different size robot platforms for inspection of different sized sewer tributaries. Initially 

a small autonomous inspection robot named “Joey” was created, which successfully 

mapped and explored 100 mm diameter pipes within a laboratory environment. 

Despite, the project’s success, autonomously mapping unknown sections of pipes, 

Joey failed to address the challenge of overcoming obstacles within pipes, which 

limited its mapping capabilities [4]. 

Given the limitations of standalone in-pipe robots, some recent research has turned to 

modular permanently linked robotic systems which form adaptable, resilient units. 

These systems aim to share load and distribute traction forces. For example, modular 

wall-press robots such as those demonstrated by Zhang et al. (2019) [5] and Jang et 

al. (2022) [8] have shown that in a laboratory setting, interconnected robots can adapt 

to changes in pipe orientation and effectively transverse sections of pipes that single 

robots cannot. 

2.2. Robot Linking Strategies 

Outside of pipes, several self-reconfigurable robotic systems have been created with 

different alignment strategies, some of these are listed in Table 1: 
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Table 1: Self-reconfigurable Robotic Docking Strategies 

System DOF Author Year Robot linking 
Strategy 

Docking 
Strategy 

Omni-Pi-tent 3 Peck, Timmis, Tyrell 
(University of York) [9] 

2019 Docking Hook Physical and 
IR Sensors 

Symbrion 3 EU Projects Symbrion 
and Replicator [10] 

2013 Cone Bolt Physical and 
IR Sensors 

SMORES 4 Davey, Kwok, Yim 
(UNSW, Upenn) [11] 

2023 EP Magnets EP Magnets 

M-TRAN III 3 Kurokawa et al. (AIST) 
[12] 

2008 Docking Hook Physical 

Sambot 3 Wei et al., (Beihang 
University) [13] 

2010 Docking Hook IR Sensors 

N/A 2 Delrobaei et al. 
(University of Western 
Ontario) [14] 

2011 Universal Joint Camera and 
LED 

A review of several self-reconfigurable robots found that magnets, whilst enabling large 

alignment tolerances, are energy intensive and require significant cooling periods. A 

more widely used docking strategy was involved mechanical docking using physical 

linkages, such as docking hooks. These systems enabled faster and more energy 

efficient docking but required more precise alignment. For instance, the M-TRAN (III), 

switched from a magnetic connection to a mechanical connection, reducing the 

connection time from over a minute to just 5 seconds [15].  

To overcome the challenge of tighter mechanical tolerances, various sensors fusion 

techniques have been employed to aid alignment. These include combinations of 

cameras with LED markers, to infrared (IR) sensors and inertial measurement units 

(IMUs) [13], [11], [14]. For example, Sambot used IR sensors to monitor the relative 

position of two robots during docking, providing real-time guidance to the actuators. Its 

mechanical hook-and-groove design allowed for a small degree of misalignment [13]. 

Delrobaei [14] used a vision-based docking system, whereby an upward-facing camera 

and coloured LED reflections on a ceiling-mounted mirror to estimate the pose of the 

target robot. 

The literature demonstrates a wide range of sensor fusion approaches to support 

alignment. IR sensors combined with mechanically guided alignment features are 

among the most common, offering a good balance between accuracy and low 

computational demand. Ultimately, there is no universally optimal alignment method; 

the choice depends on the specific requirements and constraints of the robot’s design 

and intended use. 
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2.3. Robot Navigation and Obstacle Detection Sensors 

Autonomous operation is essential for pipeline robots, as real-time communication 

from outside buried pipe networks is often unfeasible. To achieve navigation and 

inspection in these environments, a range of sensor systems have been integrated into 

different robotic platforms, to enable autonomous navigation and inspection of pipe 

networks. Table 2 summarises how sensors employed in recent research and their 

associated use cases: 

Table 2: Pipe Robot's Sensor Utilisation 

Sensor Author Use case 

IR Sensor (TOF) Nguyen (2022) [4] Obstacle and Corner Detection 

Ultrasonic Sensors Zhao (2018) [16] Obstacle and Corner Detection 

LiDAR Sensor Zeng (2019) [17] Obstacle Detection 

Masuta (2013) [18] Pipe Shape and Corner Detection 

Encoders Brown (2018) [19] Corner Detection 

IMU Nguyen (2022) [4] Robot Centring 

Murtra (2013) [20] Localisation (with cable encoder) 

Song (2016) [21] Localisation (with wheel encoder) 

Sonde YSI xylem [22] Localisation 

Camera Edwards (2023) [23] Localisation by feature recognition 

Oyama (2019) [24] Localisation by feature recognition 

Across the literature, sensor fusion was a common strategy to increase robustness in 

navigation and localisation. Nguyen’s robot “Joey” exemplifies this by integrating Time 

of Flight (TOF) sensors, an IMU, encoders, and a camera. In this design, the IMU 

facilitated robot centring and orientation tracking, while the TOF sensors and encoders 

were used for obstacle detection and localisation. The camera served primarily for 

visual inspection and offline analysis.  

Obstacle and corner detection is typically approached using distance-based sensing. 

Both Nguyen [4] and Zhao [16] used low-cost IR and ultrasonic sensors, which are 

effective in close-range environments but susceptible to noise and surface reflections. 

In contrast, Zeng [17] and Masuta [18] employed LiDAR, which offers the ability to 

detect complex shapes, at the cost of higher power consumption and size constraints. 

For localisation, methods vary significantly depending on the robot's scale and mission 

profile. Cameras have been used effectively for feature-based localisation [23], [24], 

though they rely heavily clear visual features, which are not always available inside 

pipes. IMU-encoder fusion, as seen in Murtra [20] and Song [21], provided a more 

reliable alternative in feature-poor environments. YSI xylem [22] has developed a 
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commercially available sonde for absolute positioning, which, while accurate, adds 

external infrastructure requirements. 

Overall, the choice of sensors and fusion strategies is highly application specific. While 

IR and ultrasonic sensors are effective for short-range obstacle detection, LiDAR and 

vision systems provide richer spatial data. Localisation strategies vary even more 

widely, with no single method universally preferred. The optimal configuration depends 

on factors such as pipe size, expected obstructions, power constraints, and the need 

for real-time feedback. 

2.4. Autonomous Robot Control 

Autonomous pipe robots rely on embedded control algorithms to make real-time 

decisions in constrained and often unpredictable environments. A rule-based control 

algorithm, as implemented by Zhao [16], represents one of the simplest and most used 

strategies. In such systems, the robot responds directly to sensor thresholds—such as 

ultrasonic distances—without maintaining an internal state. This method is 

computationally lightweight and easy to implement, making it well-suited for 

environments with well-defined triggers and limited resources. However, it lacks 

adaptability and scalability, particularly in complex scenarios involving decision 

hierarchies or ambiguous stimuli. 

A more structured alternative is the finite state machine (FSM) approach, used by 

Nguyen [4]. FSMs offer improved modularity by explicitly defining all robot states and 

transitions, enabling more predictable and traceable behaviour. This structure is 

particularly useful when a robot must respond differently depending on context—such 

as navigating pipe junctions or reacting to sensor failures. Despite its advantages, 

FSMs can become cumbersome as the number of possible states grows, reducing 

scalability and maintainability in more complex systems. 

In contrast, reinforcement learning (RL), as employed by Zeng [17], allows robots to 

learn optimal behaviours through trial and error, using feedback from their environment. 

RL is especially promising in environments where uncertainties or nonlinear dynamics 

make rule-based or FSM control impractical. However, RL typically requires significant 

training data and computational resources, and its learned policies can be difficult to 

interpret or guarantee in safety-critical applications like gas pipelines. 

Each of these control strategies offers distinct advantages depending on the 

application context. Rule-based methods excel in simplicity and are ideal for 



7 
 

predictable environments but fall short in flexibility. FSMs provide a balance between 

structure and adaptability, making them suitable for moderately complex systems with 

clear operational modes. Reinforcement learning, while powerful and adaptive, 

introduces challenges in training, interpretability, and computational demand. 

2.5. Robot Simulation 

Simulation is a powerful tool when developing robots, enabling a virtual representation 

of the real world, allowing for virtual testing and development, saving money and time 

developing real-world prototypes and diagnosing problems [25]. In the context of pipe 

inspection robots, simulation is particularly valuable due to the difficulty and expense 

of constructing test environments that accurately replicate underground, in service 

pipeline conditions. 

Modern simulation environments such as Gazebo, Webots and Unity provide realistic 

physics engines and support for sensor emulation, enabling the testing of detailed 

navigation and control algorithms. For example, Zeng [17]. used reinforcement learning 

within the simulation environment Gazebo to train agents over thousands of episodes 

– something that would be physically infeasible due to logistical constraints. 

Despite its benefits, robotic simulation does have its limitations. Simulated 

environments rarely capture the full complexity and unpredictability of real-world 

conditions, control algorithms that perform well within a simulation may not directly 

transfer to hardware – a phenomenon known as the “reality gap”. This gap has been 

highlighted as a key limitation in several robot development projects. 

To bridge this gap, research often employs sim-to-real transfer techniques, such as 

hybrid simulation-hardware testing, to prepare a system for the unmodelled variations 

experienced in the real-world [26]. 

2.6. Synthesis and research gap 

Currently, no commercial or research individual modular collaborative physically linking 

pipe robots exist. This project looks to address the lack of research in this area, by 

developing scalable modular collaborative pipe robots to overcome obstacles. Drawing 

inspiration from non-pipeline self-reconfiguring robots and pipeline inspection robots. 
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Chapter 3: Control Algorithm  
A Finite State Machine (FSM) control algorithm was chosen due to the limited number 

of distinct states a pipeline robot encounters during pre-linkage and FSMs support 

modularity and scalability. The algorithm includes ten defined algorithm states and six 

robot states. The flow chart in Figure 1 illustrates the transitions between these states: 

 

Figure 1: FSM Pre-Linking Control Algorithm 

Initially, the system identified the number of robots. All ACTIVE robots then began 

moving forward, monitoring for changes in range. The robot that detected the range 

change was designated the CONNECTION SEEKER. Sequential movement was then 

used to determine whether the seeker has encountered another robot or an obstacle. 

If another robot was detected, it was assigned the state CONNECTION TARGET. If an 

obstacle was detected, the seeker robot entered the state OBSTACLE NEAR. If a 

connection target was identified, the seeker approaches, attempts to align, then 

proceeds to dock and lock. If the docking was verified as successful, both robots 

transition to the CONNECTED state. If the connection failed, they reset and tried again. 

Because the system operates in a closed loop, the robots will continue attempting 

connections until all robots are connected or a failure occurs.  
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Chapter 4: Sensor Selection 
Four broad functions were needed to enable robot linkage: centring, detecting, aligning 

and connecting robots. Sensors were selected to achieve these four functions. 

4.1. Centring Robots 
Side mounted TOF, Ultrasonic and IMU sensors were proposed, to sense the robots 

offset from the centre of the pipe. Figure 2 shows the proposed arrangement and 

Figure 3, the logic of these sensors: 

  
Figure 2: Centring Robot Sensor Options Figure 3: Centring Robots Pseudo Code 

The TOF/Ultrasonic sensors can be used to measure the distance between the robot 

and the adjacent pipe walls, if one wall was found to be closer than another, the control 

algorithm would know the robot had moved off centre and take corrective action. 

Similarly, if the robot moved off centre, the IMU would measure a change in roll angle, 

feeding back to control algorithm. These two methods of centring will be tested in later 

chapters to decide on the sensor configuration. 

4.2. Detecting Robots 
To identify another robots and obstacles, two proposed methods were identified, a front 

mounted camera or a vertical 2D LiDAR. Both sensors would detect a change in the 

environment, resulting in the control algorithm classifying the obstacle type. 

 

 
Figure 4 Detecting Robots Sensor Options Figure 5: Detecting Robots Pseudo Code 
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Figure 4 illustrates the different objects the sensors would encounter, 1. Step, 2. 

Bridge, 3. Robot. Figure 5 shows pseudo code of how the control algorithm would 

differentiate between an obstacle and a robot. 

4.3. Aligning and Connecting Robots 
To detect whether robots were aligned, three different alignment detection methods 

were proposed as shown in Figure 6: 

 

Figure 6: Aligning and Connecting Robots Sensor Options 

A camera and April Tags provides the exact angle difference between two robots using 

an established image recognition algorithm. A camera and LED lights works similarly, 

by calculating the distance between each LED light, the angle difference between two 

robots could be determined. An IR Emitter/Receiver can only determine whether the 

robots are aligned. If misaligned, the pseudo code within Figure () describes how the 

robots would align. Pseudo code in Figure () outlines how the robots would connect, 

once aligned. 

 
 

 
Figure 7: Aligning Robots Pseudo Code Figure 8: Connecting Robots Pseudo Code 
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4.4. Validation of Physical Sensors  
Having identified suitable sensor fusion arrangements, following extensive research, 

considering size, cost and specifications, the sensors in Table 3 were purchased.  

Table 3: Sensor Specifications 

Sensor Ultrasonic TOF IR Emitter 
& Receiver 

IR 
Obstacle 

IMU 

Manufacturer Multicomp 
[27] 

ST 
FlightSense 
[28] 

UMT Media 
[29] 

Youmile 
[30] 

Inven 
Sense 
[31] 

Part Number HC-SR04 VL53L1X EP0049 TS-YM-
070 

MPU 
6050 

S
p
e
c
if
ic

a
ti
o

n
  Min Range (cm) 2 4 N/A 2 N/A 

Max Range (cm) 400 400 N/A 30 N/A 

Resolution (cm) 0.3 0.25 N/A N/A N/A 

Angle (°) N/A N/A N/A 35 N/A 

Cost per unit £3.27 £16.50 £3.05 £1.14 £2.68 

The camera was omitted due to memory limitations of the chosen microcontroller 

(MCU), the ESP-WROOM-32. The LiDAR was omitted due to delivery delays. An 

additional IR Obstacle Detection sensor was tested alongside the IR Emitter/Receiver, 

which works similarly but relies on one sensor detecting reflected IR light. 

4.4.1.  Range and Alignment Sensor Tests 
To verify manufacturer sensor specifications, compare different sensor types, and 

validate sensor functionality, a series of physical tests were carried out. All range and 

alignment sensors were tested using a consistent procedure, distance and angle 

values were systematically varied, and the resulting data was recorded. Figure 9 

illustrates the experimental setup used for these tests. 

4.4.1.1 Diagram and Results 

 
Figure 9: Range and Alignment Experimental Setup 

Ultrasonic and TOF distance and angle data are compared in Figures 10 and 11. The 

IR Emitter/Receiver and the Obstacle Detection sensors do not give distance values, 

solely giving true or negative values. The IR Obstacle detector features a potentiometer 

to adjust the sensor sensitivity. Figures 12 and 13 show the results of distance and 

angle tests for both sensors, including different setting for the IR Obstacle Detector. 
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Figure 10: TOF and Ultrasonic Distance Error Figure 11: TOF and Ultrasonic Angle Error 

  

Figure 12: IR Sensors Distance Results Figure 13: IR Sensors Angle Results 

4.4.1.2 Discussion 

The TOF sensor similarly to the manufacturer’s specifications, exhibiting an average 

distance error of 0.253 cm – very close to the claimed 0.25 cm. Accuracy deteriorated 

significantly at close range; at 2 cm, the sensor had a 55% error, supporting the 

manufacturer’s claim that the sensor is only reliable at distances of 4 cm and greater. 

Varying the angle of incidence increased the error, although the sensor still maintained 

an error margin under 16%. 

In contrast, the ultrasonic sensor outperformed the TOF sensor at close range. It had 

an average overall error of 0.561 cm, compared to a specified accuracy of 0.3 cm. 

Excluding the 2 cm data point, the ultrasonic sensor was 54% less accurate than the 

TOF sensor across the tested range. Additionally, it failed to detect objects distance 

reliably beyond an incidence angle of 25°. 

The IR emitter/receiver pair registered a positive signal at all tested distances and 

angles, indicating a lack off distance discrimination, rendering it unsuitable for robot 

detection and alignment. In contrast, the IR Obstacle avoidance sensors output varied 

with both distance and angle. When the onboard potentiometer was fully tightened, 

reflections were only recorded under more constrained conditions. 
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4.4.2.  IMU Sensor Tests 

The IMU MPU 6050 by InvenSense provides three acceleration readings (𝑎𝑥 , 𝑎𝑦, 𝑎𝑧) 

and three gyroscopic readings (𝑔𝑥 , 𝑔𝑦, 𝑔𝑧). Due to the tendency of gyroscopic readings 

to drift over time, when integrated, only the accelerometer data was used to calculate 

the roll and pitch. Yaw cannot be determined, as rotation about the z-axis does not 

change the direction of the gravity vector. Roll and pitch were calculated using 

Equations 1 and 2, derived from the projection of the gravity vector onto local axes.  

𝑝𝑖𝑡𝑐ℎ = arctan(
𝑎𝑦

√𝑎𝑥
2 + 𝑎𝑧

2
)     𝑟𝑜𝑙𝑙 = arctan

(

 
−𝑎𝑥

√𝑎𝑦
2  + 𝑎𝑧

2

)

 (1&2) 

InvenSense specified the maximum Roll and Pitch error to be 2.86° and 4.57°, 

respectively. Whilst it was difficult to validify the accuracy of the sensor without 

dedicated testing equipment, a rudimentary test was formulated as shown in Figure 14. 

The angle of the IMU was physically varied and the IMU data was recorded. 

4.4.2.1 Diagram and Results 

 

Attempt 
Rig IMU 

Pitch Roll Pitch Roll 

1 0 0 -2.00 -2.00 

2 0 0 -0.74 -2.10 

3 0 0 0.11 -1.27 

1 -90 0 -88.8 -3.44 

2 -90 0 -84.6 -3.87 

3 -90 0 -85.4 -1.20 

1 0 90 -3.50 88.2 

2 0 90 -2.80 87.6 

3 0 90 -0.30 87.8 
 

Figure 14: Experimental IMU Sensor Setup Table 4: Rig and IMU Experimental Data 

4.4.2.1 Discussion 

On average, there was a 2.13° difference between the experimental readings and 

sensor readings, less than the claimed maximum error, validating the IMU’s accuracy.  

4.5. Sensor Selection Conclusion 
Physical testing identified the TOF sensor as the most accurate for obstacle detection, 

though unsuitable below 4 cm. The ultrasonic sensor was more effective at close range 

but suffered from angular sensitivity and reduced overall accuracy. The IR obstacle 

avoidance sensor outperformed the basic IR emitter/receiver, which lacked distance 

discrimination. The IMU produced reliable pitch and roll measurements. Despite some 

measurement error due to low-resolution tools (protractor and ruler) and human 

experimental error, the physical tests validated a robust sensor suite for use on a robot. 
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Chapter 5: Simulation Setup, Testing and Results 
The control algorithm was initially developed and tested in the simulation environment 

Gazebo, to establish functional code. 

5.1. Simulation Setup 

 

Figure 15: Simulation and Control Algorithm Setup 

Figure 15 shows how the simulation was setup. A virtual pipe robot - equipped with all 

required sensors and actuators - was developed in Gazebo, alongside two virtual pipe 

environments containing the predefined obstacles. The simulation operates through 

ROS2, where sensors (orange) and actuators (blue) publish and subscribe to 

dedicated topics. A python script interacts with the simulation by subscribing to sensor 

topics, processing the data, and publishing commands to actuator topics to control the 

robot’s behaviour. The simulation was designed to be scalable, enabling the creation 

and simultaneously operation of multiple robots. 

5.2. Verification of Simulation Actuator Functionality 

 

 

 
Figure 16: Verification of Wheel Functionality Figure 17: Verification of 

Male Linkage Functionality 
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To verify the functionality of the wheels, linear (0.5 m/s) and angular commands were 

given to the robot on a flat plane and the output was recorded in Figure 16. To test the 

functionality of the male linkage, it was locked and unlocked, as seen in Figure 17. 

5.3. Verification and Testing of Simulation Sensors  

5.3.1 IMU and TOF 

To verify the functionality of the IMU and TOF sensors, a robot was placed inside a 15 

cm diameter pipe at three yaw angles: 0°, +5° and -5°. As the robot traversed along 

the inner surface of the pipe, changes in roll angle and TOF range readings were 

recorded, verifying that both sensor work (Figure 19, Tables 5 and 6): 

 

Figure 18: Robot 
conducting IMU and TOF 

Test 

Table 5: Side TOF Range Readings 

Start Angle (°) 0 +5 -5 

Max Difference (cm) 0.0519 0.5609 0.4552 

Max Difference (%) 1.04% 10.67% 9.58% 
 

Table 6: IMU Angle Readings 

Start Angle (°) 0 +5 -5 

Dimension Roll Pitch Roll Pitch Roll Pitch 

Max Angle (°) 3.72 1.23 22.13 3.58 24.79 1.23 
 

The IMU showed a maximum absolute roll difference of 10.73% between the +5° and 

-5° tests, indicating consistent and repeatable simulation performance. The TOF 

sensors registered a maximum left–right difference of 0.56 cm—above the quoted 

0.25 cm resolution—however this small error range was insufficient for precise control. 

Given the physical IMU's quoted maximum error of 4.7° and observed roll angles of 

over 20°, the IMU was determined to be the more suitable sensor for detecting robot 

orientation. 

5.3.2 IR Obstacle Detector 

ROS2 includes plugins for many common sensors, allowing rapid simulation 

development. However, it does not directly an IR Obstacle Detection sensor. To 

simulate this, a ROS2 plugin camera and a red detection object were created. A python 

script subscribed to the camera feed topic and processed the image data; if red pixels 

were detected, a custom ROS2 topic was published to indicate robot alignment. To 

ensure consistency with the physical sensor, a calibration test was conducted within 

the simulation. The virtual sensor setup was adjusted match the physical sensor, as 

shown Section 4.4.1.1 the real obstacle detection sensor could detect obstacles from 

6 cm at a 20° offset. Figures 19 and 20 show the simulation IR Obstacle Detection 

calibration test. At a 20° offset, the seeker robot can just see the red detection object 

on the target robot, indicating the robots are aligned. 
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Figure 19: Top-Down View of the Simulation IR 

Obstacle Detector Calibration Test 
Figure 20: Back View of the Simulation IR 

Obstacle Detector Calibration Test 

5.4. Control Algorithm Testing 
The three functions outlined in Section 4 Sensor Selection were tested within the 

simulation before being combined into the larger FSM control algorithm. 

5.4.1 Centring Robots 

A test was conducted in a scaled-up pipe environment of diameter 30 mm to reduce 

the self-centring effect present in smaller pipes. Equation 3 describes how angular 

velocity (𝜃̇) was calculated: 

𝜃̇ = 𝐾𝑝 ∗ 𝜃 (3) 

Where 𝜃 is the roll angle in radians. A larger roll angle results in a larger corrective 

angular velocity command. The value of proportional gain (𝐾𝑝) was manually tuned for 

both simulated and physical environments. Figure 22 shows the tuning results: 

  

Figure 21: Simulation Centring Test Figure 22: Kp Tunning Results 

When 𝐾𝑝 = −0.2, the robot overshot its centre position, indicating overcorrection. An 

optimal 𝐾𝑝 value of −0.1 was selected, as it enabled the robot to self-centred over the 

shortest distance. The negative sign ensures the corrective angular velocity acts in 

opposite direction of the roll angle. 
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5.4.2 Detecting, Aligning and Connecting Robots 

To evaluate the performance of the robot detection code described in Section 4.2, three 

obstacle types - a step obstacle, a bridge obstacle and a robot obstacle – were each 

tested three times. The results are recorded in Table 7, with the algorithm correctly 

identifying all obstacles in all test attempts, achieving a 100% success rate. 

Table 7: Detecting Robots Results Table 8: Aligning Robots Results 

Obstacle Type 
Correctly Identified Obstacle 

Bridge Step Robot 

Attempt 
1 TRUE TRUE TRUE 

2 TRUE TRUE TRUE 

3 TRUE TRUE TRUE 
Success Rate (%) 100 100 100 

 

Pipe Size (cm) 15 20.32 30 

Successfully 
Connected 

1 TRUE TRUE TRUE 

2 TRUE TRUE TRUE 

3 TRUE TRUE TRUE 

Success Rate (%) 100 100 100 
 

To assess the effectiveness of the robot alignment and connection functions tests were 

conducted in three different pipe sizes (15 cm, 20.32 cm and 30 cm in diameter). As 

the pipe diameter increased, the self-centring geometric effect diminished, making 

alignment more challenging. Table 8 summarises the outcomes, showing successful 

robot connections in all tests. 

5.5. Control Algorithm Simulation Results and Discussion 
Following verification of all simulation components – actuators, sensors and control 

functions – the full control algorithm was evaluated in Gazebo by varying the number 

of robots and testing whether the control algorithm could successfully link all robots. 

The control algorithm successfully navigated each robot within the simulated pipe 

environment, using sensors to detect robots, self-centring within the pipe, aligning 

robots and initiating the linking sequence. A maximum of five robots were tested and 

confirmed as successfully forming a continuous chain, validating the modular design 

and algorithm logic, robustness and scalability. The algorithm could support distributed 

coordination, each robots acted independently yet contributed to the shared task of 

forming a physically linking chain. 

 

Having demonstrated the control algorithms functionality within a simulation 

environment, physical testing (Section 6) was required to validate its performance 

under real world conditions.   
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Chapter 6: Physical Setup, Testing and Results 

6.1. Physical Setup 
Figure 23 illustrates the physical control system used to control the modular robots. 

Each robot’s equipped microcontroller ran Arduino code (with a unique IP address). 

The microcontroller handled direct communication with onboard sensors and 

actuators, while also broadcasting this data over Wi-Fi to a laptop. On the laptop, a 

python script acted as a ROS2 bridge, subscribing to and publishing messages that 

mimicked standard ROS2 topics. Enabling the main control algorithm - implemented in 

Python - to interface seamlessly with the physical robots without modifications. 

 
Figure 23: Physical Setup and Control Algorithm Communication 

6.2. Verification of Physical Setup, Sensors and Actuators 
After all robots were assembled, the ROS2 Wi-Fi control setup, along with each sensor 

and actuator were tested. A robot was commanded drive in a straight line along a flat 

surface, whilst collecting sensor data. The recorded data is shown in Figure 24: 

  
Figure 24: Sensor Noise Figure 25: Male Linkage 

The robot moved along the ground, veering slightly to the left, verifying the operation 

of the wheels and motors, but indicating there was a motor speed mismatch. While the 

robot travelled on level ground, the IMU roll angle readings fluctuated between -3.02° 

and 1.57°. To accommodate this noise, a tolerance of ±5° was used in the centring 
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logic. The TOF sensors reported a variation of 0.003 m, therefore a threshold of 0.005 

m was set to filter noise in range-based decisions. Figure 25, shows the male linkage 

in its locked and unlocked position, confirming its mechanical and control functionality. 

6.3. Physical Testing 
The rotational speed of each wheel was measured independently while varying motor 

speed commands. The linear speed of the robot was recorded to evaluate drive 

performance. Both tests are depicted in Figure 26. Response delay time was 

determined by sending a motor command via the control algorithm and recording two 

key timestamps: when the message was received by the Wi-Fi python interface, and 

when the wheels physically responded. The results are shown in Table 9: 

 

Attempt 
Time (s) 

Message 
Received 

Wheels 
Moved 

1 0.12 1.30 
2 0.14 1.40 
3 0.09 1.10 

Avg 0.12 1.27 
 

Figure 26: Speed Setting vs Linear and Wheel Speed Table 9: Response Delay Time 

6.4. Physical Results and Discussion 
Figures 27 and 28, show the final physical test setup. Multiple tests were conducted to 

tune control tolerances, movement speeds and timing parameters to suit real-world 

conditions. Despite this, the control algorithm failed to physically link any robots. 

  

Figure 27: Top-Down View of Robots Enacting Control Algorithm Figure 28: Back View of Robot 

The main reasons for failure were: 

• Delayed response times: The average delay between sending a command and 

the robot’s physical response was 1.27 s. This lag prevented timely corrections 

and often led to collisions and misalignment. 

• Inconsistent wheel speeds: Figure 26 shows a 19.1% difference in left and right 

wheel rotation speeds. This asymmetry significantly impaired the robot’s ability 

to maintain a straight path, undermining the centring and alignment functions.  
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Chapter 7: Conclusion and Future Work 

7.1. Conclusion 

A ten-state FSM control algorithm was successfully developed to govern the pre-linking 

behaviour of the modular pipe robots. Key functions – centring, detecting, aligning, and 

connecting – were achieved through carefully designed sensor fusion layouts, selected 

based on physical testing and practical constraints. 

A scalable simulation environment was created, verified for functionality and used to 

test and develop the control algorithm. Within the simulation, the algorithm successfully 

connected up to five modular robots, demonstrating both functionality and scalability. 

Three physical robots were constructed, with all sensor and actuators verified via 

ROS2-based Wi-Fi control. Whilst the algorithm performed reliably in simulation, it 

failed to achieve successful linkage in a physical environment. The primary issues were 

significant delays in command response and mismatches in wheel traction, which could 

not be mitigated through parameter tuning. These factors ultimately limited the robot’s 

ability to centre and align in real-time. In simulation, message passing was effectively 

instantaneous, masking latency-related issues. Although simulations introduce some 

noise, they often fail to replicate the random variability present in physical systems - 

such as minor wheel traction differences. This illustrates the well documented “reality 

gap” between simulated and real-world environments and highlights key challenges in 

translating a simulation-based control algorithm into a real-world physical environment.  

Despite this, the project successfully delivered a proven robust and scalable control 

algorithm that is ready for deployment on an improved physical hardware platform. 

7.2. Future Work 

Future work should focus on addressing the limitations identified in the physical testing. 

To reduce response delays, a lower-latency communication method could be 

implemented, such as onboard processing or a faster wireless protocol. Improving 

wheel traction and motor control accuracy would also enhance the robots’ ability to 

centre, align, and connect reliably. Hardware upgrades, such as including motor 

encoders, may help reduce variability in wheel speeds. Furthermore, the simulation 

environment could be refined to better account for physical imperfections, narrowing 

the reality gap. Finally, future development could extend the control algorithm to 

manage larger swarms, more complex pipe networks, and dynamic environmental.  
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Appendix 

All code can be found at: 

https://dev.azure.com/islamtagi/Pipe%20Swarm%20Project 

Figures 29 to 32 show the pictures of the physical tests undertaken: 

 

Figure 29: IR Obstacle Detection Sensor Testing: 

 

Figure 30: TOF Sensor Testing 

 

 

Figure 31: Ultrasonic Sensor Testing 

 

Figure 32: IR Receiver/Emitter Sensor Testing 
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