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Abstract

This paper presents the development of a pre-linkage control algorithm to connect a
swarm of modular robots within a pipe environment. A finite state machine (FSM)
approach was designed to manage robot behaviours across ten discrete states,
supported by a conceptual framework of sensor fusion for centring, detecting, aligning,
and connecting robots. Physical testing of candidate sensors informed the selection of
a suitable sensor fusion layout, balancing performance, cost, and system constraints.
A scalable simulation environment was created to develop and validate the control
algorithm, with successful linkage of up to five robots demonstrating both functionality
and scalability. Three physical robots were then built and tested under ROS2 control
via Wi-Fi. Although the control algorithm proved successful in simulation, physical trials
highlighted critical real-world limitations, particularly response delays and traction
inconsistencies, which prevented successful linkage. The project establishes a
foundation for future improvements to bridge the gap between simulated and physical

robot performance.



Chapter 1: Introduction

1.1. Introduction

Pipelines are critical infrastructure for transporting essential resources such as oil, gas
and water. Unfortunately, as pipelines age, they suffer from damage, corrosion,
deformation and leakage, reducing network efficiency and increasing maintenance
needs. Historically, inspections have been carried out by human workers [1], but this
approach is limited to larger diameter pipes, exposes personal to hazardous
environments, and is time-consuming and costly. In the UK alone, there are over
625,000 km of sewage pipelines [2], with an average diameter of just 15 cm [3] — far

too small for human access.

To overcome these challenges, tethered CCTV rovers are commonly used. While
effective, cable management issues and the high costs of deployment and footage
analysis limit their efficiency. Autonomous robot inspection offers a promising
alternative, with the potential to improve speed, safety, and coverage [4]. Although
various specialised pipe inspection robots have been developed in laboratory settings
([4]1, [5], [6], [7]), none have successfully transitioned to commercial use. Current
commercial solutions remain largely tethered and manually operated.

Operating underground presents major challenges for robotic systems. GPS signals
are unavailable, and communication links are unreliable, making external localisation
and control infeasible. Robots must instead rely on onboard sensors to localise,
navigate, and make autonomous decisions in highly constrained, unpredictable
environments. Autonomy not only reduces the need for constant human supervision
but also enables faster, more efficient inspections across complex pipe networks where

human access is impossible.

A further key challenge is adapting to the highly variable conditions within real-world
pipes, such as sudden changes in pipe diameter, debris, steps, and bends. In this
context, modular robots offer significant advantages. Drawing on developments in the
field of self-reconfigurable robotics, modular systems can physically link together to
share traction, overcome obstacles, and adapt dynamically to different environments.
Unlike single rigid robots, modular swarms can increase their collective resilience,

enabling access to areas that would otherwise be unreachable.



In collaboration with a larger team, this project seeks to address these challenges by
developing a swarm of modular, collaborative, physically linking robots capable of
overcoming obstacles inside pipes. Specifically, this individual project focuses on
designing and testing the pre-linkage control algorithm — the stage where initially
disconnected modular robots autonomously detect, approach, and connect to each

other in preparation for collective movement.

The structure of this report is as follows: Chapter 2 presents a literature review of
existing approaches to pipe robot locomotion, linking, navigation, control, and
simulation, Chapter 3 introduces the proposed control algorithm, Chapter 4 details the
sensor selection process and physical sensor testing, Chapter 5 presents the
development and testing of the simulation environment, Chapter 6 describes the
physical system implementation and experimental results and Chapter 7 provides

conclusions and recommendations for future work.

1.2. Individual Project Aims

The aim of this project is to develop, test and integrate a pre-linkage swarm control

algorithm to connect a swarm of modular robots.

1.3. Individual Project Objectives

1. Conduct a literature review, investigating existing in-pipe robot localisation,
navigation, linking mechanisms, control strategies and simulation practices
2. Develop a pre-linkage control algorithm concept and a suitable sensor fusion
strategy
a. Outline a control algorithm to link a scalable number of modular robots.
b. Identify potential sensor configurations
c. Perform experimental testing on individual physical sensors to validate
performance and select the most appropriate sensors
3. Develop and validate a pipe simulation environment to test the control algorithm
a. Create scalable modular robot models with verified sensors and
actuator plugins in a pipe world simulation
b. Implement and test the control algorithm within the simulation to
evaluate its functionality, scalability and robustness
4. Develop and validate a physical prototype system
a. Build physical modular robots with selected sensors and actuators,
controllable over Wi-Fi using ROS2 communication

b. Test and validate the control algorithm in a physical pipe environment



Chapter 2: Literature Review

2.1. Pipe Robot Locomotion and Obstacle Challenges

The locomotion mechanisms employed by in-pipe robots vary widely, from wheeled
and tracked designs to screw-drive and snake-inspired systems. Each approach is
developed with the aim of traversing the confined and often irregular geometries of
pipelines reliably. Wheeled robots are noted for their simplicity and speed; however,
they often struggle with rough terrain, low traction causing wheel slippage and sudden
changes in ground height [7] [6]. In contrast, tracked, screw-drive, and snake-inspired
systems benefit from increased traction and stability but tend to require more complex
mechanisms and are frequently tailored to a single, unchanging pipe diameter [8].
Although extensive simulation and controlled experimentation have optimised
individual locomotion strategies, very few systems have addressed the cumulative
impact of several naturally occurring obstacles within operational pipelines — such as

sequences of obstacles such as steps and bridges.

The Pipebots project, was created to develop robotic platforms for autonomous
inspection of underground pipes. The project envisioned the collaboration of multiple
different size robot platforms for inspection of different sized sewer tributaries. Initially
a small autonomous inspection robot named “Joey” was created, which successfully
mapped and explored 100 mm diameter pipes within a laboratory environment.
Despite, the project’'s success, autonomously mapping unknown sections of pipes,
Joey failed to address the challenge of overcoming obstacles within pipes, which

limited its mapping capabilities [4].

Given the limitations of standalone in-pipe robots, some recent research has turned to
modular permanently linked robotic systems which form adaptable, resilient units.
These systems aim to share load and distribute traction forces. For example, modular
wall-press robots such as those demonstrated by Zhang et al. (2019) [5] and Jang et
al. (2022) [8] have shown that in a laboratory setting, interconnected robots can adapt
to changes in pipe orientation and effectively transverse sections of pipes that single

robots cannot.

2.2. Robot Linking Strategies

Outside of pipes, several self-reconfigurable robotic systems have been created with

different alignment strategies, some of these are listed in Table 1:



Table 1: Self-reconfigurable Robotic Docking Strategies

System DOF | Author Year | Robot linking | Docking
Strategy Strategy

Omni-Pi-tent | 3 Peck, Timmis, Tyrell 2019 | Docking Hook | Physical and
(University of York) [9] IR Sensors

Symbrion 3 EU Projects Symbrion 2013 | Cone Bolt Physical and
and Replicator [10] IR Sensors

SMORES 4 Davey, Kwok, Yim 2023 | EP Magnets EP Magnets
(UNSW, Upenn) [11]

M-TRAN llI 3 Kurokawa et al. (AIST) 2008 | Docking Hook | Physical
[12]

Sambot 3 Wei et al., (Beihang 2010 | Docking Hook | IR Sensors
University) [13]

N/A 2 Delrobaei et al. 2011 | Universal Joint | Camera and
(University of Western LED
Ontario) [14]

A review of several self-reconfigurable robots found that magnets, whilst enabling large
alignment tolerances, are energy intensive and require significant cooling periods. A
more widely used docking strategy was involved mechanical docking using physical
linkages, such as docking hooks. These systems enabled faster and more energy
efficient docking but required more precise alignment. For instance, the M-TRAN (lll),
switched from a magnetic connection to a mechanical connection, reducing the

connection time from over a minute to just 5 seconds [15].

To overcome the challenge of tighter mechanical tolerances, various sensors fusion
techniques have been employed to aid alignment. These include combinations of
cameras with LED markers, to infrared (IR) sensors and inertial measurement units
(IMUs) [13], [11], [14]. For example, Sambot used IR sensors to monitor the relative
position of two robots during docking, providing real-time guidance to the actuators. Its
mechanical hook-and-groove design allowed for a small degree of misalignment [13].
Delrobaei [14] used a vision-based docking system, whereby an upward-facing camera
and coloured LED reflections on a ceiling-mounted mirror to estimate the pose of the

target robot.

The literature demonstrates a wide range of sensor fusion approaches to support
alignment. IR sensors combined with mechanically guided alignment features are
among the most common, offering a good balance between accuracy and low
computational demand. Ultimately, there is no universally optimal alignment method;
the choice depends on the specific requirements and constraints of the robot’s design

and intended use.



2.3. Robot Navigation and Obstacle Detection Sensors

Autonomous operation is essential for pipeline robots, as real-time communication
from outside buried pipe networks is often unfeasible. To achieve navigation and
inspection in these environments, a range of sensor systems have been integrated into
different robotic platforms, to enable autonomous navigation and inspection of pipe
networks. Table 2 summarises how sensors employed in recent research and their

associated use cases:

Table 2: Pipe Robot's Sensor Utilisation

Sensor

Author

Use case

IR Sensor (TOF)

Nguyen (2022) [4]

Obstacle and Corner Detection

Ultrasonic Sensors

Zhao (2018) [16]

Obstacle and Corner Detection

LiDAR Sensor

Zeng (2019) [17]

Obstacle Detection

Masuta (2013) [18]

Pipe Shape and Corner Detection

Encoders Brown (2018) [19] Corner Detection
IMU Nguyen (2022) [4] Robot Centring
Murtra (2013) [20] Localisation (with cable encoder)
Song (2016) [21] Localisation (with wheel encoder)
Sonde YSI xylem [22] Localisation
Camera Edwards (2023) [23] Localisation by feature recognition

Oyama (2019) [24]

Localisation by feature recognition

Across the literature, sensor fusion was a common strategy to increase robustness in
navigation and localisation. Nguyen'’s robot “Joey” exemplifies this by integrating Time
of Flight (TOF) sensors, an IMU, encoders, and a camera. In this design, the IMU
facilitated robot centring and orientation tracking, while the TOF sensors and encoders
were used for obstacle detection and localisation. The camera served primarily for

visual inspection and offline analysis.

Obstacle and corner detection is typically approached using distance-based sensing.
Both Nguyen [4] and Zhao [16] used low-cost IR and ultrasonic sensors, which are
effective in close-range environments but susceptible to noise and surface reflections.
In contrast, Zeng [17] and Masuta [18] employed LiDAR, which offers the ability to

detect complex shapes, at the cost of higher power consumption and size constraints.

For localisation, methods vary significantly depending on the robot's scale and mission
profile. Cameras have been used effectively for feature-based localisation [23], [24],
though they rely heavily clear visual features, which are not always available inside
pipes. IMU-encoder fusion, as seen in Murtra [20] and Song [21], provided a more

reliable alternative in feature-poor environments. YSI xylem [22] has developed a



commercially available sonde for absolute positioning, which, while accurate, adds

external infrastructure requirements.

Overall, the choice of sensors and fusion strategies is highly application specific. While
IR and ultrasonic sensors are effective for short-range obstacle detection, LIDAR and
vision systems provide richer spatial data. Localisation strategies vary even more
widely, with no single method universally preferred. The optimal configuration depends
on factors such as pipe size, expected obstructions, power constraints, and the need

for real-time feedback.

2.4. Autonomous Robot Control

Autonomous pipe robots rely on embedded control algorithms to make real-time
decisions in constrained and often unpredictable environments. A rule-based control
algorithm, as implemented by Zhao [16], represents one of the simplest and most used
strategies. In such systems, the robot responds directly to sensor thresholds—such as
ultrasonic distances—without maintaining an internal state. This method is
computationally lightweight and easy to implement, making it well-suited for
environments with well-defined triggers and limited resources. However, it lacks
adaptability and scalability, particularly in complex scenarios involving decision

hierarchies or ambiguous stimuli.

A more structured alternative is the finite state machine (FSM) approach, used by
Nguyen [4]. FSMs offer improved modularity by explicitly defining all robot states and
transitions, enabling more predictable and traceable behaviour. This structure is
particularly useful when a robot must respond differently depending on context—such
as navigating pipe junctions or reacting to sensor failures. Despite its advantages,
FSMs can become cumbersome as the number of possible states grows, reducing

scalability and maintainability in more complex systems.

In contrast, reinforcement learning (RL), as employed by Zeng [17], allows robots to
learn optimal behaviours through trial and error, using feedback from their environment.
RL is especially promising in environments where uncertainties or nonlinear dynamics
make rule-based or FSM control impractical. However, RL typically requires significant
training data and computational resources, and its learned policies can be difficult to

interpret or guarantee in safety-critical applications like gas pipelines.

Each of these control strategies offers distinct advantages depending on the

application context. Rule-based methods excel in simplicity and are ideal for



predictable environments but fall short in flexibility. FSMs provide a balance between
structure and adaptability, making them suitable for moderately complex systems with
clear operational modes. Reinforcement learning, while powerful and adaptive,

introduces challenges in training, interpretability, and computational demand.

2.5. Robot Simulation

Simulation is a powerful tool when developing robots, enabling a virtual representation
of the real world, allowing for virtual testing and development, saving money and time
developing real-world prototypes and diagnosing problems [25]. In the context of pipe
inspection robots, simulation is particularly valuable due to the difficulty and expense
of constructing test environments that accurately replicate underground, in service

pipeline conditions.

Modern simulation environments such as Gazebo, Webots and Unity provide realistic
physics engines and support for sensor emulation, enabling the testing of detailed
navigation and control algorithms. For example, Zeng [17]. used reinforcement learning
within the simulation environment Gazebo to train agents over thousands of episodes

— something that would be physically infeasible due to logistical constraints.

Despite its benefits, robotic simulation does have its limitations. Simulated
environments rarely capture the full complexity and unpredictability of real-world
conditions, control algorithms that perform well within a simulation may not directly
transfer to hardware — a phenomenon known as the “reality gap”. This gap has been

highlighted as a key limitation in several robot development projects.

To bridge this gap, research often employs sim-to-real transfer techniques, such as
hybrid simulation-hardware testing, to prepare a system for the unmodelled variations

experienced in the real-world [26].

2.6. Synthesis and research gap

Currently, no commercial or research individual modular collaborative physically linking
pipe robots exist. This project looks to address the lack of research in this area, by
developing scalable modular collaborative pipe robots to overcome obstacles. Drawing

inspiration from non-pipeline self-reconfiguring robots and pipeline inspection robots.



Chapter 3: Control Algorithm

A Finite State Machine (FSM) control algorithm was chosen due to the limited number
of distinct states a pipeline robot encounters during pre-linkage and FSMs support
modularity and scalability. The algorithm includes ten defined algorithm states and six
robot states. The flow chart in Figure 1 illustrates the transitions between these states:

Algorithm State

. START/END
FAILED < Failure DISCOVER AND INITILIZE
h ROBOTS O NORMAL

Success D CONTAINS CENTRE

m Robot State: ACTIVE ROBOT FUNCTION

_—" Are all robats Ves m
CONNECTED?
.
MOVE ALL ACTIVE ROBOTS
FORWARD & OBSERVE RANGE

Range Change Detected
Robot State: CONNECTION SEEKER

s J

Y
( STOP ALL ROBOTS )

Obstacle Detected +
Robot State: OBSTACLE NEAR
{ SEQUENTIAL CONFIRMATION>
Robot Detected
& W Robot State: CONNECTION TARGET
:C APPROACH TARGET )
If Alignment is False Robot State
Robot State: RESETTING - LA 4
( ———
RESETTING - \_ ALIGNING * ACTIVE
F 3
If Alignment is True -’ CONNECTION TARGET
L\ A 4
( DOCKING & LOCKING ) OBSTACLE NEAR
Failure - CONNECTION SEEKER
Robot State: RESETTING vy
{__VERIFYING CONNECTION ) -’ CONNECTED
Success * RESETTING
& Robot State: CONNECTED

( STOP ALL ROBOTS )
|

Figure 1: FSM Pre-Linking Control Algorithm
Initially, the system identified the number of robots. All ACTIVE robots then began

moving forward, monitoring for changes in range. The robot that detected the range
change was designated the CONNECTION SEEKER. Sequential movement was then
used to determine whether the seeker has encountered another robot or an obstacle.
If another robot was detected, it was assigned the state CONNECTION TARGET. If an
obstacle was detected, the seeker robot entered the state OBSTACLE NEAR. If a
connection target was identified, the seeker approaches, attempts to align, then
proceeds to dock and lock. If the docking was verified as successful, both robots
transition to the CONNECTED state. If the connection failed, they reset and tried again.
Because the system operates in a closed loop, the robots will continue attempting

connections until all robots are connected or a failure occurs.
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Chapter 4: Sensor Selection

Four broad functions were needed to enable robot linkage: centring, detecting, aligning
and connecting robots. Sensors were selected to achieve these four functions.

4.1. Centring Robots

Side mounted TOF, Ultrasonic and IMU sensors were proposed, to sense the robots
offset from the centre of the pipe. Figure 2 shows the proposed arrangement and
Figure 3, the logic of these sensors:

2x TOF or Ultrasonic . 1x IMU Input: data from IMU, TOF or Ultrasonic sensors
Output: Robot position

If Moving Forwards is true:
If Left Tolerance < Robot Position < Right Tolerance:
return

Else:
If Robot Position < Left Tolerance:
Robot move to the right
Else if Robot Position > Right Tolerance:
Robot move to the left

Else:
Robot move forward
TOP return
DOWN BACK ON
Figure 2: Centring Robot Sensor Options Figure 3: Centring Robots Pseudo Code

The TOF/Ultrasonic sensors can be used to measure the distance between the robot
and the adjacent pipe walls, if one wall was found to be closer than another, the control
algorithm would know the robot had moved off centre and take corrective action.
Similarly, if the robot moved off centre, the IMU would measure a change in roll angle,
feeding back to control algorithm. These two methods of centring will be tested in later

chapters to decide on the sensor configuration.

4.2. Detecting Robots

To identify another robots and obstacles, two proposed methods were identified, a front
mounted camera or a vertical 2D LiDAR. Both sensors would detect a change in the
environment, resulting in the control algorithm classifying the obstacle type.

Input: data from Camera or 2D LIDAR
Output: Obstacle Detection

If Pipe Fingerprint is not None:
If (Pipe Fingerprint - Sensor Data) > Threshold:
Object Detected == True
Object Fingerprint == Sensor Data
3 Stop all robots

Return
—_— Else:
Pipe Fingerprint == Sensor Data
Return

. If Object Detected == True:
. Camera or LIDAR For nin robots(n):

Robot n move forward

Wait 1 second
If (Object Fingerprint - Sensor Data) > Threshold:
Robot n state: DETECTED

2
Break
L Else:

Obstacle Detected
Algorithm State: OBSTACLE CLASSIFICATION

Figure 4 Detecting Robots Sensor Options Figure 5: Detecting Robots Pseudo Code



Figure 4 illustrates the different objects the sensors would encounter, 1. Step, 2.
Bridge, 3. Robot. Figure 5 shows pseudo code of how the control algorithm would
differentiate between an obstacle and a robot.

4.3. Aligning and Connecting Robots

To detect whether robots were aligned, three different alignment detection methods
were proposed as shown in Figure 6:

1. Camera with April Tags 2. Camera with LED Lights
. Camera 3. IR Receiver/Emitter

I TOFtrasonic

@ .c0Lighss

April Tag . Infrared Emitter

. Infrared Receiver

Figure 6: Aligning and Connecting Robots Sensor Options
A camera and April Tags provides the exact angle difference between two robots using

an established image recognition algorithm. A camera and LED lights works similarly,
by calculating the distance between each LED light, the angle difference between two
robots could be determined. An IR Emitter/Receiver can only determine whether the
robots are aligned. If misaligned, the pseudo code within Figure () describes how the
robots would align. Pseudo code in Figure () outlines how the robots would connect,
once aligned.

Input: Camera, IR Detector/Emitter or LIDAR
Output: Connection Status

If Alignment Status is True:
Move CONNECTION SEEKER Forward

Input: Camera or IR Detector/Emitter Reverse CONNECTION TARGET

Output: Algorithm State If Distance < Threshold Distance

If Alignment Status is True: Wait 5 seconds
Stop all robots Lock CONNECTION SEEKER Male Linkage
Algorithm State: LOCKING & DOCKING Else:

Else: Algorithm State: ALIGNING

Twist CONNECTION TARGET to the left
Wait 1 second
Twist CONNECTION TARGET to the right
Wait 2 second

If CONNECTION SEEKER Male Locked is True:
Stop all robots

Twist CONNECTION TARGET to the left Locked Fingerprint == Sensor Data
Vo et Reverse CONNECTION SEEKER
Algorithm State: RESETTING If Locked Fingerprint is not None:

Wait 1 second
If (Locked Fingerprint — Sensor Data) > Threshold
Algorithm State: RESETTING

Else:
Robot State: CONNECTION SEEKER = CONNECTED
CONNECTION TARGET = CONNECTED
Algorithm State: STOP ALL ROBOTS
Figure 7: Aligning Robots Pseudo Code Figure 8: Connecting Robots Pseudo Code
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4.4. Validation of Physical Sensors

Having identified suitable sensor fusion arrangements, following extensive research,

considering size, cost and specifications, the sensors in Table 3 were purchased.

Table 3: Sensor Specifications

Sensor Ultrasonic | TOF IR Emitter | IR IMU
& Receiver | Obstacle
Manufacturer Multicomp | ST UMT Media | Youmile Inven
[27] FlightSense | [29] [30] Sense
[28] [31]
Part Number HC-SR04 | VL53L1X EP0049 TS-YM- MPU
070 6050
c Min Range (cm) 2 4 N/A 2 N/A
.% Max Range (cm) | 400 400 N/A 30 N/A
e Resolution (cm) 0.3 0.25 N/A N/A N/A
8 [ Angle () N/A N/A N/A 35 N/A
n
Cost per unit £3.27 £16.50 £3.05 £1.14 £2.68

The camera was omitted due to memory limitations of the chosen microcontroller
(MCU), the ESP-WROOM-32. The LIiDAR was omitted due to delivery delays. An
additional IR Obstacle Detection sensor was tested alongside the IR Emitter/Receiver,

which works similarly but relies on one sensor detecting reflected IR light.

4.4.1. Range and Alignment Sensor Tests

To verify manufacturer sensor specifications, compare different sensor types, and
validate sensor functionality, a series of physical tests were carried out. All range and
alignment sensors were tested using a consistent procedure, distance and angle
values were systematically varied, and the resulting data was recorded. Figure 9

illustrates the experimental setup used for these tests.

4.4.1.1 Diagram and Results

Flat Pipe
Computer =— ESP-WROOM-32 j:

/F 10 cm

Protract
20 cm Ruler rotractor

Figure 9: Range and Alignment Experimental Setup
Ultrasonic and TOF distance and angle data are compared in Figures 10 and 11. The

IR Emitter/Receiver and the Obstacle Detection sensors do not give distance values,
solely giving true or negative values. The IR Obstacle detector features a potentiometer
to adjust the sensor sensitivity. Figures 12 and 13 show the results of distance and

angle tests for both sensors, including different setting for the IR Obstacle Detector.

11
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Figure 12: IR Sensors Distance Results Figure 13: IR Sensors Angle Results
4.4.1.2 Discussion
The TOF sensor similarly to the manufacturer’s specifications, exhibiting an average
distance error of 0.253 cm — very close to the claimed 0.25 cm. Accuracy deteriorated
significantly at close range; at 2 cm, the sensor had a 55% error, supporting the
manufacturer’s claim that the sensor is only reliable at distances of 4 cm and greater.
Varying the angle of incidence increased the error, although the sensor still maintained

an error margin under 16%.

In contrast, the ultrasonic sensor outperformed the TOF sensor at close range. It had
an average overall error of 0.561 cm, compared to a specified accuracy of 0.3 cm.
Excluding the 2 cm data point, the ultrasonic sensor was 54% less accurate than the
TOF sensor across the tested range. Additionally, it failed to detect objects distance

reliably beyond an incidence angle of 25°.

The IR emitter/receiver pair registered a positive signal at all tested distances and
angles, indicating a lack off distance discrimination, rendering it unsuitable for robot
detection and alignment. In contrast, the IR Obstacle avoidance sensors output varied
with both distance and angle. When the onboard potentiometer was fully tightened,

reflections were only recorded under more constrained conditions.
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4.4.2. IMU Sensor Tests

The IMU MPU 6050 by InvenSense provides three acceleration readings (ay, ay, a;)
and three gyroscopic readings (gx, gy, g;)- Due to the tendency of gyroscopic readings
to drift over time, when integrated, only the accelerometer data was used to calculate
the roll and pitch. Yaw cannot be determined, as rotation about the z-axis does not
change the direction of the gravity vector. Roll and pitch were calculated using

Equations 1 and 2, derived from the projection of the gravity vector onto local axes.

ay ) /_ax\
vai +az /a32,+a§/

InvenSense specified the maximum Roll and Pitch error to be 2.86° and 4.57°,

pitch = arctan( roll = arctan (1&2)

respectively. Whilst it was difficult to validify the accuracy of the sensor without
dedicated testing equipment, a rudimentary test was formulated as shown in Figure 14.
The angle of the IMU was physically varied and the IMU data was recorded.

4.4.2.1 Diagram and Results

Attempt Rig IMU

Pitch | Roll | Pitch | Roll

1 0 0 -2.00 | -2.00

2 0 0 -0.74 | -2.10

3 0 0 0.11 | -1.27

1 -90 0 -88.8 | -3.44

2 -90 0 -84.6 | -3.87

3 -90 0 -85.4 | -1.20

1 0 90 | -3.50 | 88.2

2 0 90 | -2.80 | 87.6

_ 3 0 90 | -0.30 | 87.8
Figure 14: Experimental IMU Sensor Setup Table 4: Rig and IMU Experimental Data

4.4.2.1 Discussion
On average, there was a 2.13° difference between the experimental readings and

sensor readings, less than the claimed maximum error, validating the IMU’s accuracy.

4.5. Sensor Selection Conclusion

Physical testing identified the TOF sensor as the most accurate for obstacle detection,
though unsuitable below 4 cm. The ultrasonic sensor was more effective at close range
but suffered from angular sensitivity and reduced overall accuracy. The IR obstacle
avoidance sensor outperformed the basic IR emitter/receiver, which lacked distance
discrimination. The IMU produced reliable pitch and roll measurements. Despite some
measurement error due to low-resolution tools (protractor and ruler) and human

experimental error, the physical tests validated a robust sensor suite for use on a robot.

13



Chapter 5: Simulation Setup, Testing and Results

The control algorithm was initially developed and tested in the simulation environment
Gazebo, to establish functional code.

5.1. Simulation Setup

Alignment /agent_0/imu

/agent_0/tof_range
/agent_0/alignment
/agent_0/male_angle

‘ /agent_0/female_angle

Subscribe
Linkage
Joint
Female
linkage
Joint

, Publish
C_ToF D

Pipe Environment ]Lf/,

/agent_0/cmd_vel
/agent_0/male_angle
/agent_0/female_angle

Figure 15: Simulation and Control Algorithm Setup
Figure 15 shows how the simulation was setup. A virtual pipe robot - equipped with all

required sensors and actuators - was developed in Gazebo, alongside two virtual pipe
environments containing the predefined obstacles. The simulation operates through
ROS2, where sensors (orange) and actuators (blue) publish and subscribe to
dedicated topics. A python script interacts with the simulation by subscribing to sensor
topics, processing the data, and publishing commands to actuator topics to control the
robot’s behaviour. The simulation was designed to be scalable, enabling the creation
and simultaneously operation of multiple robots.

5.2. Verification of Simulation Actuator Functionality

1 | =——0.0rad/s 0.1rad/s
—(0.2rad/s -0.1rad/s
0.5 | ——-0.21ad/s

X (m)

Figure 16: Verification of Wheel Functionality Figure 17: Verification of
Male Linkage Functionality

14



To verify the functionality of the wheels, linear (0.5 m/s) and angular commands were
given to the robot on a flat plane and the output was recorded in Figure 16. To test the

functionality of the male linkage, it was locked and unlocked, as seen in Figure 17.

5.3. Verification and Testing of Simulation Sensors

5.3.1 IMU and TOF

To verify the functionality of the IMU and TOF sensors, a robot was placed inside a 15
cm diameter pipe at three yaw angles: 0°, +5° and -5°. As the robot traversed along
the inner surface of the pipe, changes in roll angle and TOF range readings were

recorded, verifying that both sensor work (Figure 19, Tables 5 and 6):
Table 5: Side TOF Range Readings

Start Angle (°) 0 +5 -5
Max Difference (cm) 0.0519 0.5609 0.4552
Max Difference (%) 1.04% 10.67% 9.58%

Table 6: IMU Angle Readings
Start Angle (°) 0 +5 -5

Dimension Roll | Pitch | Roll | Pitch | Roll | Pitch
Max Angle (°) | 3.72 | 1.23 | 22.13 | 3.58 | 24.79 | 1.23

Figure 18: Robot
conducting IMU and TOF
Test

The IMU showed a maximum absolute roll difference of 10.73% between the +5° and
-5° tests, indicating consistent and repeatable simulation performance. The TOF
sensors registered a maximum left—right difference of 0.56 cm—above the quoted
0.25 cm resolution—however this small error range was insufficient for precise control.
Given the physical IMU's quoted maximum error of 4.7° and observed roll angles of
over 20°, the IMU was determined to be the more suitable sensor for detecting robot

orientation.

5.3.2 IR Obstacle Detector

ROS2 includes plugins for many common sensors, allowing rapid simulation
development. However, it does not directly an IR Obstacle Detection sensor. To
simulate this, a ROS2 plugin camera and a red detection object were created. A python
script subscribed to the camera feed topic and processed the image data; if red pixels
were detected, a custom ROS2 topic was published to indicate robot alignment. To
ensure consistency with the physical sensor, a calibration test was conducted within
the simulation. The virtual sensor setup was adjusted match the physical sensor, as
shown Section 4.4.1.1 the real obstacle detection sensor could detect obstacles from
6 cm at a 20° offset. Figures 19 and 20 show the simulation IR Obstacle Detection
calibration test. At a 20° offset, the seeker robot can just see the red detection object

on the target robot, indicating the robots are aligned.
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Camera FOV

Red Detection
Object

Figure 19: Top-Down View of the Simulation IR Figure 20: Back View of the Simulation IR
Obstacle Detector Calibration Test Obstacle Detector Calibration Test

5.4. Control Algorithm Testing

The three functions outlined in Section 4 Sensor Selection were tested within the
simulation before being combined into the larger FSM control algorithm.

5.4.1 Centring Robots
A test was conducted in a scaled-up pipe environment of diameter 30 mm to reduce
the self-centring effect present in smaller pipes. Equation 3 describes how angular
velocity (8) was calculated:

0=K,*0 3)
Where 6 is the roll angle in radians. A larger roll angle results in a larger corrective
angular velocity command. The value of proportional gain (K,) was manually tuned for

both simulated and physical environments. Figure 22 shows the tuning results:

0.2
0.15
0.1
0.05
E o
>
20,05 © 0.5 1 1.5 2
— Kp =0
-01 ——Kp=-0.01
-0.15 —Kp =-0.05
——Kp=-0.1
-0.2 —Kp=-0.2
x(m)
Figure 21: Simulation Centring Test Figure 22: Kp Tunning Results
When K, = —0.2, the robot overshot its centre position, indicating overcorrection. An

optimal K,, value of —0.1 was selected, as it enabled the robot to self-centred over the
shortest distance. The negative sign ensures the corrective angular velocity acts in

opposite direction of the roll angle.
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5.4.2 Detecting, Aligning and Connecting Robots

To evaluate the performance of the robot detection code described in Section 4.2, three
obstacle types - a step obstacle, a bridge obstacle and a robot obstacle — were each
tested three times. The results are recorded in Table 7, with the algorithm correctly
identifying all obstacles in all test attempts, achieving a 100% success rate.

Table 7: Detecting Robots Results Table 8: Aligning Robots Results
Obstacle Type Cor-rectlyldentifiedObstacle Pipe Size (cm) 15 20.32 30
Bridge | Step | Robot 1| TRUE | TRUE | TRUE
o [ | et | |
3 | TRUE | TRUE | TRUE
3 TRUE TRUE TRUE )

Success Rate (% 100 100 100

Success Rate (%) 100 100 100

To assess the effectiveness of the robot alignment and connection functions tests were
conducted in three different pipe sizes (15 cm, 20.32 cm and 30 cm in diameter). As
the pipe diameter increased, the self-centring geometric effect diminished, making
alignment more challenging. Table 8 summarises the outcomes, showing successful
robot connections in all tests.

5.5. Control Algorithm Simulation Results and Discussion

Following verification of all simulation components — actuators, sensors and control
functions — the full control algorithm was evaluated in Gazebo by varying the number

of robots and testing whether the control algorithm could successfully link all robots.

The control algorithm successfully navigated each robot within the simulated pipe
environment, using sensors to detect robots, self-centring within the pipe, aligning
robots and initiating the linking sequence. A maximum of five robots were tested and
confirmed as successfully forming a continuous chain, validating the modular design
and algorithm logic, robustness and scalability. The algorithm could support distributed
coordination, each robots acted independently yet contributed to the shared task of

forming a physically linking chain.

e e N

= & & % & (

Having demonstrated the control algorithms functionality within a simulation
environment, physical testing (Section 6) was required to validate its performance

under real world conditions.
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Chapter 6: Physical Setup, Testing and Results

6.1. Physical Setup

Figure 23 illustrates the physical control system used to control the modular robots.
Each robot’s equipped microcontroller ran Arduino code (with a unique IP address).
The microcontroller handled direct communication with onboard sensors and
actuators, while also broadcasting this data over Wi-Fi to a laptop. On the laptop, a
python script acted as a ROS2 bridge, subscribing to and publishing messages that
mimicked standard ROS2 topics. Enabling the main control algorithm - implemented in

Python - to interface seamlessly with the physical robots without modifications.

A /agent_0/imu

Arduino
Code

Code

s Pyth?” | /agent_0/tof_range
Agent_2 ensor Topic /agent_0/alignment
Creation

/agent_0/male_angle
/agent_0/female_angle

Subscribe

Master

Agent_1

Arduino Python
Code Wi-Fi
Code

Publish
Agent_0
Arduino

Code /agent_0/cmd_vel

/agent_0/male_angle
/agent_0/female_angle

I

I
h

I

Figure 23: PhyS|caI Setup and Control Algorithm Communication

6.2. Verification of Physical Setup, Sensors and Actuators

After all robots were assembled, the ROS2 Wi-Fi control setup, along with each sensor
and actuator were tested. A robot was commanded drive in a straight line along a flat
surface, whilst collecting sensor data. The recorded data is shown in Figure 24:

2 0.065
0.064
0.063
0.062
0.061
0.06

-6 : 0.059
Time (s)

Figure 24: Sensor Noise

Angle (°)

Range (m)

Roll

Figure 25: Male Linkage

The robot moved along the ground, veering slightly to the left, verifying the operation
of the wheels and motors, but indicating there was a motor speed mismatch. While the
robot travelled on level ground, the IMU roll angle readings fluctuated between -3.02°

and 1.57°. To accommodate this noise, a tolerance of £5° was used in the centring
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logic. The TOF sensors reported a variation of 0.003 m, therefore a threshold of 0.005
m was set to filter noise in range-based decisions. Figure 25, shows the male linkage

in its locked and unlocked position, confirming its mechanical and control functionality.

6.3. Physical Testing

The rotational speed of each wheel was measured independently while varying motor
speed commands. The linear speed of the robot was recorded to evaluate drive
performance. Both tests are depicted in Figure 26. Response delay time was
determined by sending a motor command via the control algorithm and recording two
key timestamps: when the message was received by the Wi-Fi python interface, and

when the wheels physically responded. The results are shown in Table 9:

__20.000 0.200
(2]
3 16.000 0.160 —
g’ 12.000 0.120 E Time (s)
2T ’ 5 Attempt | Message | Wheels
L 8.000 0.080 g Received | Moved
% 4.000 0.040 ® 1 0.12 1.30
(]
é 0.000 0.000 0.14 1.40
——L ft(\}Vh L (rad/s) >0 100 A3 802 1;0
e eel (rad/s i \74 1 1.27
—@— Right Wheel (rad/s) Speed Setting
—@— Speed (m/s)
Figure 26: Speed Setting vs Linear and Wheel Speed Table 9: Response Delay Time

6.4. Physical Results and Discussion

Figures 27 and 28, show the final physical test setup. Multiple tests were conducted to

tune control tolerances, movement speeds and timing parameters to suit real-world

conditions. Despite this, the control algorithm failed to physically link any robots.

Figure 27: Top-Down View of Robots Enacting Control Algorithm Figure 28: Back View of Robot
The main reasons for failure were:

e Delayed response times: The average delay between sending a command and
the robot’s physical response was 1.27 s. This lag prevented timely corrections
and often led to collisions and misalignment.

¢ Inconsistent wheel speeds: Figure 26 shows a 19.1% difference in left and right
wheel rotation speeds. This asymmetry significantly impaired the robot’s ability

to maintain a straight path, undermining the centring and alignment functions.
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Chapter 7: Conclusion and Future Work

7.1. Conclusion

A ten-state FSM control algorithm was successfully developed to govern the pre-linking
behaviour of the modular pipe robots. Key functions — centring, detecting, aligning, and
connecting — were achieved through carefully designed sensor fusion layouts, selected

based on physical testing and practical constraints.

A scalable simulation environment was created, verified for functionality and used to
test and develop the control algorithm. Within the simulation, the algorithm successfully

connected up to five modular robots, demonstrating both functionality and scalability.

Three physical robots were constructed, with all sensor and actuators verified via
ROS2-based Wi-Fi control. Whilst the algorithm performed reliably in simulation, it
failed to achieve successful linkage in a physical environment. The primary issues were
significant delays in command response and mismatches in wheel traction, which could
not be mitigated through parameter tuning. These factors ultimately limited the robot’s
ability to centre and align in real-time. In simulation, message passing was effectively
instantaneous, masking latency-related issues. Although simulations introduce some
noise, they often fail to replicate the random variability present in physical systems -
such as minor wheel traction differences. This illustrates the well documented “reality
gap” between simulated and real-world environments and highlights key challenges in

translating a simulation-based control algorithm into a real-world physical environment.

Despite this, the project successfully delivered a proven robust and scalable control

algorithm that is ready for deployment on an improved physical hardware platform.

7.2. Future Work

Future work should focus on addressing the limitations identified in the physical testing.
To reduce response delays, a lower-latency communication method could be
implemented, such as onboard processing or a faster wireless protocol. Improving
wheel traction and motor control accuracy would also enhance the robots’ ability to
centre, align, and connect reliably. Hardware upgrades, such as including motor
encoders, may help reduce variability in wheel speeds. Furthermore, the simulation
environment could be refined to better account for physical imperfections, narrowing
the reality gap. Finally, future development could extend the control algorithm to

manage larger swarms, more complex pipe networks, and dynamic environmental.
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Appendix
All code can be found at:
https://dev.azure.com/islamtagi/Pipe%20Swarm%20Project

Figures 29 to 32 show the pictures of the physical tests undertaken:

Figure 29: IR Obstacle Detection Sensor Testing: Figure 30: TOF Sensor Testing

iy

e

Figure 31: Ultrasonic Sensor Testing Figure 32: IR Receiver/Emitter Sensor Testing
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Meeting Logs

Meeting 1

Date

01/11/2024

Progress Since Last Meeting

¢ Completed the initial draft of the
Coursework Project Proposal (CPP).

» Assigned project roles (Path Planning,
Electronic/Drive Systems, Mechanical
Design/FEA, Obstacle Detection).

¢ Conducted general research on pipe
exploration, obstacle detection, modular
robots, and swarm control.

« Discussed methodologies for robot
design, control methods, and testing
environments.

» Gathered inspiration for potential locking
mechanisms (e.g., latches, electromagnets,
hook & latch, interlocking mechanisms,
snap-fits, solenoids, bow release).

Planned Work Until Next Meeting

» Finalize the CPP (refine Introduction,
Aims/Objectives, Deliverables, Project
Tasks, Resources Declaration, Gantt Chart,
Risk Management, Ethical Considerations).
« Continue research in assigned work
areas.

» Consider power constraints for design
concepts.

Supervisor Signature

ARB




Meeting 2

Date

15/11/2024

Progress Since Last Meeting

¢ Conducted initial component searches.
* Discussed design mechanisms and
component types.

 Progressed with drafting the CPP.

Planned Work Until Next Meeting

» Finalize list of components (to borrow
and to purchase).

¢ Decide drivetrain configuration (e.g., 2-
motor system).

« Select sensors (ultrasonic considered).

» Assemble basic prototype for Week 11
presentation.

» Review GrabCAD models (targeting
300mm pipes).

» Investigate servos and power
requirements.

 Research sensors, actuators, MCU, power
solutions.

« Start presentation draft and component
purchases.

Supervisor Signature

ARB




Meeting 3

Date

22/11/2024

Progress Since Last Meeting

« [nvestigated power consumption:
batteries and motors.

» Created chassis blockout model.

e Researched sensors (ToF, Camera,
Ultrasonic, LiDAR, AprilTags).

« [nvestigated motor options and
connection mechanisms.

» Researched MCUs and communication
methods (Zigbee, Bluetooth).

» Estimated BOM costs and power draw.

Planned Work Until Next Meeting

* Select the best camera option and check
availability.

« [nvestigate robot detection through
communication/odometry.

e Purchase initial test components (LiDAR,
ToF, Ultrasonic, Camera).

 Decide on drivetrain (wheels vs tracks, 2
vs 4 wheel drive).

e Design and evaluate linkage mechanisms.
* Define project aims (e.g.,, 150mm pipe
target).

* Prepare for the presentation.

Supervisor Signature

ARB




Meeting 4

Date

29/11/2024

Progress Since Last Meeting

« Selected battery type, motor (N20 with
50:1 gear ratio), and communication
method.

e Listed components for purchase.

¢ Defined system overview.

« Drafted circuit diagrams and initial design
blockouts.

e Estimated max current draw and
operation times.

Planned Work Until Next Meeting

« Finalize full circuit diagram (fuses, diodes,
buck converters, IMU).

e Determine current draw and select
appropriate converters.

e Choose wheel configuration (3 vs 4
wheels).

« Confirm final battery choice (LiPo 2S 7.4V
450mAh).

Supervisor Signature

ARB




Meeting 5

Date

14/02/2025

Progress Since Last Meeting

e Completed BOM.

« Delivered first presentation.
 Received several components.

* Refined current draw estimates across
voltage rails.

Planned Work Until Next Meeting

* Refine schematic and PCB design (correct
ESP MCU, avoid breadboards, no sharp
angles).

e Implement safety features (polyfuses, kill
switch, reverse polarity protection, low
battery indicator).

» Develop WebUI dashboard.

» Begin circuit control tests with Arduino
and WiFi.

Supervisor Signature

ARB




Meeting 6

Date 28/02/2025
Progress Since Last Meeting * Printed and tested linkage prototype (4kg
holding).

e Completed individual component testing
and initial coding.

« Finalized schematic diagrams and initial
PCB Gerber layout.

¢ Created electronics 3D model and mass
calculations.

 Developed collision detection algorithm.
e Carried out torque and step height
calculations.

¢ Advanced ROS2 simulation and Movelt
integration.

Planned Work Until Next Meeting

e Complete testing for DC Motors and
Stepdown Converters.

« Finalize power management, sensor
connections on PCB.

* Route PCB layout.

« Finalize battery choice.

 Decide between LiDAR or 3x ToF sensors.
 Evaluate Infrared sensors.

¢ Continue ROS2 development and finalize
V1 robot design.

Supervisor Signature

ARB




Meeting 7

Date

07/03/2025

Progress Since Last Meeting

e Tested IR sensors, DC motors, motor
drive.

e Structured Arduino code.

» Final PCB design based on selected
Sensors.

e Selected 2S 450mAh battery.

¢ Modeled V2 robot with linkage and
compact features.

e Printed TPU wheels.

e Imported linkage into simulation and
tested.

¢ IMU data sent to ROS topic (with minor
data loss).

Planned Work Until Next Meeting

e Test buck converters.

e Fix DC motor code.

* Integrate wireless communication.
» Finalize full system testing.

e Finalize TOF connector board and
compact voltage regulators.

e Manufacture V2 robot.

e Complete and verify simulation
functionalities.
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Meeting 8

Date

14/03/2025

Progress Since Last Meeting

e Completed linkage prototype and
electronics model.

e Completed initial PCB layout and BoM.
» V1 robot design nearly finished.

Planned Work Until Next Meeting

* Design driven motor hub.

e Update V2 robot design.

¢ Plan detailed wheel tests (varying TPU
infill, PLA toothed/smooth,
incline/load/wet surface tests).

e Design TOF sensor array.
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Meeting 9

Date 28/03/2025

Progress Since Last Meeting ¢ Manufacturing of V2 robot started.
¢ TPU tyres printed.
» Simulations for obstacles and IR sensors
completed.

e Final PCB and TOF array ordered.
e WiFi communication set up.

* Robot connected in Movelt2.

« Finalized ROS integration.

Planned Work Until Next Meeting

e Complete V2 manufacturing,

e Test TPU tyres and assemble robots.
« Verify simulations.

« Integrate sensor data and obstacle
detection.

« Final system testing.
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Meeting 10

Date

10/04/2025

Progress Since Last Meeting

e Final PCBs received and soldered.

* Robot assembly progressed (Robot 1
done, Robot 2 90%, Robot 3 parts printed).
e Full Arduino/ROS integration tested.

* Buck converters tuned.

e Simulation matches physical robot
behavior.

¢ Complete modular robot simulation code
written.

Planned Work Until Next Meeting

« Finalize servo control.

e Complete circuit testing (wired and WiFi).
« Finalize obstacle differentiation.

¢ Complete robot assembly and full system
physical testing.

Supervisor Signature

ARB




